Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Utilization of COMSOL Multiphysics® Java API for the Integration of Composite Material Properties Through a Customized User Interface - new

R. Malav[1]
[1]Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Introduction: Usage of Composite Materials properties is rapidly gaining acceptance in various industries such as aircraft manufacturing, automotive, healthcare, etc. Its main strengths are light weight material, great strength and durability, strength related to weight, corrosion resistance and design flexibility. In the process of modeling and simulation, many a time a user wants to use ...

A Computational Acoustic Interrogation of Damage to Wind Turbine Blades

R. Canturk [1], M. Inalpolat [1],
[1] University of Massachusetts - Lowell, Lowell, MA, USA

Modern wind turbine blades consist of composite airfoil shaped structures that form a hollow acoustic cavity. Because of continually varying aerodynamic forces, gravitational loads, lightning strikes, and weather conditions, all blades will experience leading and trailing edge splits, cracks, or holes. Acoustic sources (speakers and wind flow) excite this dynamic cavity structure. The blade ...

Numerical Modelling of Wave Propagation in Particulate Composites

P. S. K. Mylavarapu, and S. Boddapati
Defence Metallurgical Research Laboratory

Syntactic foams are hollow particle filled composites that have recently emerged as attractive materials for use in advanced structural applications in aerospace and defence industry. Ultrasonic characterization of these foams is performed extensively in order to understand the effect of porosity and particle size on the ultrasonic properties such as longitudinal velocity and attenuation. ...

An Acoustical Finite Element Model of Perforated Elements

P. Bonfiglio[1][2] and F. Pompoli[1][2]
[1]Materiacustica S.r.l., Ferrara, Italy
[2]Engineering Department, University of Ferrara, Ferrara, Italy

The present work deals with a numerical investigation of resonating systems used for noise control applications. In literature one can find analytical models based on fluiddynamics concepts for evaluating losses occurring across the holes of the perforates. In the paper an acoustical formulation based on the equivalent dissipative fluid approach will be analyzed. It will be firstly applied to ...

Vibrational Modes and Optical Phonon Dispersion in Silicon Metalattices

Y. Xiong [1]
[1] Department of Materials Science and Engineering, Pennsylvania State University - University Park, State College, PA, USA

Phonons underlie the propagation of sound and the transport of heat in materials. With outstanding progress in the design of phononic crystals, it is now feasible to control the acoustic properties of these materials and to endow them with unique acoustic properties. For instance, it has been shown that by decreasing the characteristic dimensions of a phononic crystal, the ability to control ...

Lumped Element Multimode Modeling of Balanced-armature Receiver with COMSOL Multiphysics® Software

Wei Sun [1],
[1] Institute of Acoustics, Tongji University, China

For the lack of higher order modes, lumped element (LE) models currently used may be insufficient to predict the system of balanced-armature receiver (BAR). We develop a LE multimode model for BAR in the frequency domain based on the techniques of mode decomposition, truncation, and selection via COMSOL Multiphysics® software. The validation is made by comparing with both the corresponding ...

基于超大规模并行计算的多尺度模型声振特性仿真与预报

郁殿龙 [1], 温激鸿 [1], 尹剑飞 [1],
[1] 国防科学技术大学,长沙,湖南,中国

汽车、飞行器、舰船、高速列车等工程装备中,振动和噪声问题会严重影响装备可靠性、安全性、使用寿命和人员的健康。因此,减振降噪需求迫切,相关技术和研究也得到了前所未有的重视。 国防科技大学振动与噪声控制研究团队从2003年开始,致力于基于人工周期结构理论的弹性波传播特性、调控机理及其应用探索研究。将物理学领域中声子晶体、声学超材料等人工周期结构中的新概念与工程减振降噪应用相结合,设计研发了多种声波控制器件与结构。 COMSOL Multiphysics® 声学模块的丰富接口及其处理多物理场耦合问题的强大功能,为研究团队解决复杂多尺度结构的声振特性预报和减振降噪设计提供了有力的工具。在此平台上,研究团队设计了局域共振低频吸声材料,并依托学校“天河二号”超级计算机并行计算环境,开展了元胞尺度(mm量级)到部件尺度(m量级)模型的声学特性有限元建模求解 ...

Simulation of Pearl-Chain Formation of Microparticles by Acoustic Standing Waves, including Inter-Particle Forces and Collisions

T. Baasch [1], J. Dual [1],
[1] ETH Zurich, Insitute for Mechanical Systems, Zurich, Switzerland

Acoustic standing waves can be used to manipulate micrometer sized particles, cells and organisms. In most applications these objects are driven towards pressure nodal lines, predominantly by the primary acoustic radiation force. Interestingly, at intermediate particle concentrations, detailed phenomena of line-formation and inter-line repulsion occur. Such phenomena are believed to be caused by ...

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

G. F. Greco [1], I. K. S. Hermont [1], B. P. Murta [1], T. B. Romero [1], P. H. Mareze [1], A. Lenzi [2], J. A. Cordioli [2],
[1] Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
[2] Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil

This study aims to develop and validate a finite element numerical model to represent the Insertion Loss (IL) promoted by the enclosure of a sound source. For the validation, a enclosure prototype was built in wood and the IL was measured in laboratory. The idea is to develop an efficient numerical model that would be suitable for enclosure's design and optimization. The problem was modeled ...

CFD Analysis of a Macroscale Ultrasonic Separator

K. Chitale [1], B. Lipkens [1, 2], W. Presz, Jr. [1],
[1] FloDesign Sonics Inc., Wilbraham, MA, USA
[2] Western New England University, Springfield, MA, USA

Macroscale ultrasonic separation is a new filtration technology, with various applications such as cell clarification, cell therapy, blood-lipid separation, oil-water separation etc. These systems use piezoelectric transducers to create standing waves in fluid-particle mixture. Suspended particles get clustered by action of acoustic radiation forces and are separated out by enhanced gravity ...