Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Modeling and Verification of Acoustic Streaming Induced by Ultrasonic Treatment

D. Rubinetti [1], D. A. Weiss [1], J. M├╝ller [2], A. Wahlen [2],
[1] Institute of Thermal and Fluid Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
[2] Institute of Product and Production Engineering, University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland

Acoustic streaming (AS) describes a physical phenomenon where an oscillating sound emitter induces a steady fluid motion. Metal processing industry applies this treatment for grain morphology adjustments during the solidification of metal. Improvement and further development of this technique focus on numerical modeling to reduce substantial costs for test rigs and field tests. This study ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

Numerical Study on Shear Horizontal Electromagnetic Acoustic Transducers for Generation of Ultrasonic Guided Waves for Absorber Tubes used in Concentrated Solar Plants - new

L. Cheng[1], A. Mohimi[1], M. Kogia[1], V. Kappatos[1], C. Selcuk[1], T.-H. Gan[1]
[1]Brunel Innovation Centre, Brunel University, Uxbridge, UK

Absorber tubes are one of the most critical components of parabolic trough Concentrated Solar Plants, which is very likely get damaged such as crack and mass loss. Therefore, the monitoring of their structural health via Non-Destructive Testing (NDT) techniques is regarded as essential for preventing them from being significantly defective and thereby reducing maintenance cost. Non-contact ...

Determination of the Mechanical Properties in the Avian Middle Ear by Inverse Analysis - new

P. Muyshondt[1], J. Soons[1], D. de Greef[1], J. Peacock[1], J. Dirckx[1]
[1]University of Antwerp, Antwerp, Belgium

The middle ear of birds is a fascinating mechanical system, as it contains only one bony ossicle, compared to three in mammals, yet its auditory performance is not substantially worse. Its design resembles some currently used middle ear prostheses, so the understanding of its working could improve the treatment of some forms of hearing impairment. We have constructed a finite element model of a ...

Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials

A. Castellano[1], P. Foti[1], A. Fraddosio[1], S. Marzano[1], M.D. Piccioni[1], D. Scardigno[1]
[1]DICAR, Politecnico di Bari, Bari, Italy

Introduction: Improving the capability of nondestructive evaluations requires the analysis of suitable models dealing with the physical and mechanical phenomena involved in the experiments. For example, ultrasonic tests may be a powerful, fast and effective method for nondestructive characterization of mechanical properties of materials. This requires the study of the related elastodynamic ...

Modeling of Ultrasonic Fatigue-Life Testing Machine

D. Dimitrov[1], V. Mihailov[1], B. Kostov[1]
[1]Technical University of Varna, Varna, Bulgaria

Usually fatigue-life tests of materials are long, time-consuming and expensive. With the development of high power piezoceramic actuators nowadays it is possible to provide at very high cycles 10e10 fatigue tests (VHCF) for reasonable times, at high frequency. The ultrasonic fatigue machine consists of piezoceramic transducer, booster, horn and specimen made of tested material. System works in ...

Numerical Vibration Analysis of Impacted CFRP Specimens Using COMSOL Multiphysics® Software

P. Jatzlau [1], F. Seybold [1], C. Grosse [1],
[1] Technical University of Munich, Chair of Non-destructive Testing, Munich, Germany

The vibration behavior of carbon fiber reinforced composites (CFRP) specimens with impact damage is presented in order to evaluate if an before/after modal analysis can be used as a non-destructive testing method to detect delaminations. The impact damage is modeled by decreasing the stiffness in the described area of delamination. As detailed experimental data exists for the modeled structure, ...

Modal Analysis of Microcantilever Response to Sine Wave Excitation Using Vibrational Speaker

M. Satthiyaraju [1], T. Ramesh [1],
[1] National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

The dynamic response of microcantilever, which is a simple microelectromechanical system (MEMS) structure, to sine wave excitation is studied using the vibrational speaker set up in the atmospheric damping. Microcantilever is fabricated using micro wire cut EDM process for high precision. Mostly silicon material is used for microsystems based structure. Here stainless steel was used and machined ...

The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets

R.M.G. Ferrari[1]
[1]Danieli Automation S.p.A., Buttrio, UD, Italy

The acoustoelastic effect relates the change in the speed of an acoustic wave travelling in a solid, to the pre-stress of the propagation medium. In this work the possibility of assessing nondestructively the stress status in metal sheets, by using the acoustoelastic effect, is investigated. As the effect turns out to be very small for practical values of applied stress, the proposed technique ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...