Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Sound Field Analysis of Monumental Structures by the Application of Diffusion Equation Model - new

Z. S. Gul[1], N. Xiang[2], M. Caliskan[3]
[1]Department of Architecture, Middle East Technical University, Ankara, Turkey
[2]School of Architecture, Rensselaer Polytechnic Institute, Troy, NY, USA
[3]Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey

Sound energy distribution patterns within enclosed spaces are the basic concerns of architectural acoustics. Energy decays are analyzed for major acoustical parameter estimations, while spatial energy distribution and flow vectors are indicative in the analysis of sound energy circulation and concentration zones. In this study the acoustical field of a real-size multi-domed monumental ...

Numerical Simulation of Phonon Dispersion Relations for Phononic Crystals

G. Zhu[1], E.M. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, MI, USA

In previous work, a two-dimensional (2D) model was carried out to simulate the phononic band structure of a phononic crystal with square lattice structure, but this model did not account for the out-of-plane phonon dispersions [1]. In fact, for 2D films used for coating materials, it is more interesting to understand their cross-plane properties. In this work, the phonon dispersion relation of ...

Computational Acoustic Attenuation Performance of Helicoidal Resonators

W. Lapka
Poznan University of Technology
Poznan, Poland

This paper concerns the problem of obtaining proper acoustic attenuation performance through computations. COMSOL was used to solve acoustics systems with helicoidal resonators in the frequency domain. Based on the studies of insertion and transmission loss of helicoidal resonators, a high consistency between the results obtained by numerical calculations with experimental measurements was ...

Cloud Computations for Acoustics with Coupled Physics - new

A. Daneryd[1], D. Ericsson[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]COMSOL AB, Stockholm, Sweden

For certain classes of scientific and technical computations the cloud may offer easily accessible, scalable, and affordable gigantic computing power. A power that for these classes may lead to a step change in model and analysis complexity compared to what is feasible with dedicated clusters and similar networked solutions. Acoustics with or without interaction with coupled physics fields ...

Simulation of SAW-Driven Microparticle Acoustophoresis Using COMSOL Multiphysics® Software

N. Nama [1], R. Barnkob [2], C. J. Kähler [2], T. J. Huang [1], F. Costanzo [1]
[1] Department of Engineering Science and Mechanics, Pennsylvania State University, PA, USA
[2] Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Neubiberg, Germany

Introduction - The ability to precisely manipulate fluid and particles at microscales is one of the essential requirements for various lab-on-a-chip applications such as drug diagnostics, chemical synthesis etc.[1] Recently, the nonlinear interaction of surface acoustic waves (SAW) with fluid at microscales has been utilized to achieve this aim. When surface acoustic waves interact with fluid ...

梯度多孔玻璃丝吸声性能的数值研究

张秀海 [1], 王琼 [1], 屈治国 [1],
[1] 西安交通大学,西安,陕西,中国

引言 多孔材料能够吸收大量声能且只反射少量声波,因此具有良好的吸声性能而被广泛地用于噪声的控制。梯度多孔材料吸声性能的实验研究已经有所开展,但相应的数值研究却很鲜见。 COMSOL Multiphysics® 的使用 本文分别用3层和6层孔隙度呈等差数列的多孔玻璃丝组合成梯度多孔玻璃丝(图1为由3层不同孔隙度的多孔玻璃丝组成的梯度多孔玻璃丝,空气区域为宽W、高H的矩形,余下区域为多孔玻璃丝区域),并根据 DBM 模型采用 COMSOL Multiphysics® 模拟组合成的梯度多孔玻璃丝的吸声性能。 结果 由图2,梯度多孔玻璃丝(3层)与相同厚度、相同孔隙度普通多孔玻璃丝比较,前者在声音处于低频段情况吸声效果有明显的改善。梯度多孔玻璃丝(3层)和梯度多孔玻璃丝(6层)的吸声系数如图3所示,在 100Hz-400Hz 的低频段,两者吸声系数有较大的误差。 结论 ...

Sound Propagation through Circular Ducts with Spiral Element Inside

W. Lapka
Poznan University of Technology, Poland

This paper examines a sound propagation without airflow through circular ducts with spiral element inside. Models are numerically computed in three-dimensions. The spiral element in the duct is a newly analyzed acoustical element, geometrically similar to the well-known Archimedes screw. It can be applied significantly in ducted systems, such as ventilation, air-conditioning and heat ...

Comsol’s New Thermoviscous Interface and Computationally Efficient Alternative Formulations for FEM

W. R. Kampinga[1], and Y. H. Wijnant[2]
[1]Reden, Hengelo, Netherlands
[2]University of Twente, Enschede, Netherlands

Three efficient alternatives to the model in COMSOL’s thermoacoustics interface are presented. The higher efficiency of these models are explained from theory and are demonstrated by means of two examples.

Design of Resonator for Ultrasonic Motor with Vibrational Transmission Line using COMSOL

H. Tamura
Tohoku Institute of Technology
Japan

This paper is in Japanese.

Lamb Waves in Fluid-Loaded Plates

T. Kaufmann[1], F. Kassubek[1], D. Pape [1], M. Lenner[1]
[1]ABB Corporate Research, Baden-Dättwil, Switzerland

Lamb waves are elastic waves propagating in free solid plates. In the case of plates loaded with a fluid, the equations describing these waves have to be modified to include the effects of the fluid. In our work we have tackled this problem using COMSOL Multiphysics®. We have used the two-dimensional plane strain model of the solid mechanics interface to calculate the eigenmodes of the coupled ...