Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Modeling of Galvanic Interactions between AA5083 and Steel under Atmospheric Condition

D. Mizuno, Y. Shi, and R. Kelly
University of Virginia
Charlottesville, VA

Aluminum alloys 5000 series are widely used within the cabins of ships. These aluminum alloys are often joined via steel bolts. There is thus a concern that galvanic interactions will exacerbate corrosion of the aluminum alloys. In this study, a model of the galvanic corrosion between aluminum alloy AA5083 and steel under atmospheric conditions was built. The Nernst-Plank equation and the ...

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt (flux) in order to improve the transport of magnesium vapor out of the flux and achieve chemical homogeneity in ...

Numerical Results of Two 3D Coupled Models of a Unitary PEM Fuel Cell of 144cm² - new

E. Robalinho[1], E. F. Cunha[2], M. Linardi[2]
[1]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil
[2]IPEN/CNEN-SP, São Paulo, SP, Brazil

This computational implementation presents a new strategy of coupling two 3D models to satisfy the requirements of the comprehensive model of a unitary Proton Exchange Membrane fuel cell, including its internal geometries and constitutive materials, as well as distinct physical and chemical processes. Those different simultaneous processes required computational effort and the solution was the ...

Simulation of C-MEMS Based Enzymatic Biofuel Cell

Y. Parikh, V. Penmatsa, J. Yang, and C. Wang

Department of Mechanical & Material Science Engineering, Florida International University, Miami, FL, USA

An Enzymatic Biofuel Cell (EBFC) converts the chemical energy in biological fuels into electricity. In this work, we optimize the performance of the Carbon-Micro Electro Mechanical system in an EBFC by using COMSOL Multiphysics. With a simple model, we realized that most of the glucose reacts with enzymes at the top of the electrode posts, while the bottoms of the posts remain deficient of the ...

Electrochemical Pickling of Steel for Industrial Applications: Modeling

M. Freda[1], A. Giannetti[1], L. Lattanzi[1], S. Luperi[1]
[1]Centro Sviluppo Materiali, Rome, Italy

The electrochemical pickling of steel has two main purposes: 1) To remove thermal oxide; 2) To dissolve chromium-depleted layer, to reinstate the corrosion-resistant properties of the stainless steel; A reliable, flexible and robust 3D model has been made for simulating the steel electrochemical pickling. This process is modeled as a multiphysics system for the current control. The model ...

Modelling Coating Lifetime: First Practical Application for Coating Design

T. Machado Amorim [1], C. Allély[1], J. Caire[2]
[1]Arcelor Mittal Research, Maizieres-les-Metz, France
[2]ENSEEG, Grenoble, France

The corrosion at cut-made edges is significant due to the anode to cathode surface ratio in this region. The major problems are the risks of red rust appearance at the exposed steel surface, and the risks of paint delamination in case of insufficient corrosion protection. The work presented here focuses on the development of a 2D FEM model simulating a steady state corrosion situation at a cut ...

Electrochemical Characterization of the Microband Graphite Electrodes

A. V. Volkov [1], A. N. Sekretaryova [2], I. V. Zozoulenko [1], A. P. F. Turner [2], M. Yu. Vagin [2], M. Eriksson [2]
[1] Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
[2] Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden

The microband design of microelectrodes is a cost-effective and easily-fabricated compromise combining convergent mass transport, due to microscale width as a critical dimension, and high output currents due to the macroscopic length. Among the various techniques available for microband electrode fabrication, screen-printing stands out as an inexpensive approach. The application of cross cutting ...

Thermal Analysis on Module Level in an Automotive Battery Package

Z. Wu [1], H. Kemper [1],
[1] Energy Storage Systems, FH Aachen, Aachen, Germany

Vehicles with battery as energy storage fascinate more and more people. Meanwhile, more questions are surfaced – How to ensure a safe operation of the battery package? How long could the cycle life of a battery package reach? Can a battery package be operated in any environmental circumstance? All these questions are the driving forces of our work – development of the optimal battery packs for ...

Modeling of Lead-acid Flow Battery

M. N. Nandanwar[1], S. K. Gupta[1]
[1]Indian Institute of Science, Bangalore, India

Failure of conventional lead-acid battery is attributed to degradation of solid active mass (PbO2 and PbSO4 ). A number of research efforts are underway worldwide to overcome degradation of active mass to improve the cycle life of lead-acid batteries. Soluble lead-acid flow battery (SLFB) is a new kind of lead-acid flow battery in which products of discharge remain in dissolved state. SLFB ...

Simulating Performance and Species Crossover in a Vanadium Redox Flow Battery using COMSOL Multiphysics

E. Agar, K. Knehr, C. Dennison, and E. Kumbur
Electrochemical Energy Systems Lab.
Dept. of Mechanical Eng. and Mechanics
Drexel University
Philadelphia, PA

Vanadium redox flow batteries (VRBs) are a promising new energy storage technology designed for use in long term applications such as uninterruptible power supply and coupling with renewable energy sources (i.e. wind and solar). Crossover is the undesired transport of vanadium ions through the ion exchange membrane during operation and is a major factor limiting the overall efficiency and charge ...