Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Heat Pipe Assisted Thermal Management of an HT PEMFC Stack

E. Firat[1], G. Bandlamudi[1], M. Crisogianni[1], P. Beckhaus[1], A. Heinzel[1]
[1]Centre for Fuel Cell Technology (ZBT), Duisburg,NRW, Germany

Heat management is crucial for the satisfactory operation of HT-PEM (High temperature polymer-electrolyte-membrane) fuel cells. Current work investigates the use of heat pipes in a HT PEMFC stack consisting of 24 cells, each with an active area of 300 cm^2. Heat pipes are known to be thermal superconductors operating on the principles of high convective heat transfer and phase transition. ...

COMSOL Multiphysics® Simulation of Energy Conversion and Storage Concepts Based on Oxide Crystals - new

C. Cherkouk[1], M. Zschornak[1], J. Hanzig[1], M. Nentwich[1], F. Meutzner[1], M. Urena[1], T. Leisegang[2], D. C. Meyer[1]
[1]Institute of Experimental Physics, Technische Universität Bergakademie, Freiberg, Germany
[2]Fraunhofer-Technologiezentrum, Freiberg, Germany

A mathematical model based on a finite element method (FEM) is presented as an initial approach for a system converting waste heat energy into chemical energy. This system consists of a pyroelectric LiNbO3 plate placed into a cylinder which undergoes a laminar water flow with an appropriate periodic heat source. It solves the heat transfer equation in non-isothermal flow, where the density of ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Rechargeable Battery for Hybrid Diesel-Electric Locomotive

Michael A. Vallance
Team Leader, GE Global Research

Over time, rechargeable batteries degrade and eventually stop working. You see some combination of declining capacity, rapid self-discharge, and reduced power. Degradation mode depends on battery design, but also on the application. Often, multiple physical processes contribute to degradation. In the laboratory, you can measure performance degradation. You can dissect the battery to discover ...

Current Density Simulations in the Electrodeposition from Ionic Liquids: Effects of the Conductivity

I. Perissi[1], C. Borri[1], S. Caporali[1], and A. Lavacchi[1]
[1]Department of Chemistry, University of Firenze, Sesto Fiorentino, FI, Italy

The overall goal of this work is the use of COMSOL Multiphysics® in the modeling of the current density distributions for the electrodeposition of aluminum coatings from ionic liquids. The local current distribution is strongly dependant on the conductivity and on the geometry of the galvanic cell and can only be computed by the numerical solution of the partial differential equations ...

Application of COMSOL Multiphysics in the Simulation of Magnesium Refining and Production

X. Guan[1], E. Gratz[1], U. Pal[1]
[1]Division of Materials Science and Engineering, Boston University, Brookline, MA, USA

Computational fluid dynamics (CFD) modeling is a useful tool to gain an insight into various high temperature metallurgical processes such as the magnesium refining and the magnesium solid oxide membrane (SOM) electrolysis. In both processes, argon gas was used to stir the molten salt (flux) in order to improve the transport of magnesium vapor out of the flux and achieve chemical homogeneity in ...

Tertiary Current Distributions on Rotating Electrodes

L. Tong
Kesoku Engineering System Co., Ltd.,

The tertiary current distributions on rotating electrodes are studied in this work. An acid copper sulfate electrolyte is used within an electrochemical cell of practical dimensions. The distributions of ion concentrations are obtained by the two-dimensional fluid flow simulation and the solution of mass-transport equations based on axial symmetry.

Lithium-Ion Battery Simulation for Greener Ford Vehicles

D. Bernardi
Ford Motor Company

Dr. Bernardi is a Research Engineer with Ford Motor Company in Dearborn, MI. Her research focuses on the analysis and simulation of electrochemical energy-storage and conversion systems. In particular, Dr. Bernardi develops mathematical models that predict system behavior and identify governing physicochemical processes. Experimental investigations support model development, analysis, and ...

Three Dimensional Modeling of PEM Fuel Cells with Current Collection from the Gas Diffusion Layer

R. Pushpangadan[1], A. Soman[2], Arundas R.[2], N. G. Thoppan[2], S. P. Duttagupta[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]College of Engineering, Munnar, Kerala, India

PEM fuel cells are very promising for portable applications. A key component of fuel cell is the flow field plate through which hydrogen will reach the anode, oxygen will reach the cathode and electron collection. Flow field plate made of silicon is not a good electrical conductor , so electrical contacts has to be attached to the Gas Diffusion Layer (GDL) for taking the power to outside ...

Thermal Battery Cell Modeling in a Spirally-Wound Geometry - new

G.Liebig[1], L. Komsiyska[1], P. Bise[1], H. Seeba[1], P. Bohn[2], S. Vasic [1]
[1]NEXT ENERGY, Oldenburg, Niedersachsen, Germany
[2]AUDI AG, Ingolstadt, Bayern, Germany

The characterization of Li-ion batteries is a relevant topic due to the recent developments in Electric Vehicles (EV’s) and Hybrid Electric Vehicles (HEV’s) applications. In order to manage these devices, accurate models are required. At NEXT ENERGY a two dimensional cell-level thermal model was created based on the discharge characteristics of a cylindrical 18650 secondary Li-ion battery ...