Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Multiscale Model of the Bipolar Electrode - SDS Adsorption on Stainless Steel

Hörmann, Johannes (何约翰) [1], Meng, Yonggang (孟永钢) [1],
[1] State Key Laboratory of Tribology, Tsinghua University, Beijing, China

In solution, sodium dodecyl sulfate (SDS) (structure shown in Fig. 1) can form a boundary film on metal surfaces. Previous studies have extensively investigated the characteristics of such surfactant films experimentally [1][2][3]. A dependency of SDS surface concentration and film structure on the metal's electric potential has been demonstrated, in aqueous as well as in non-aqueous solutions. ...

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Tertiary Current Distributions on Rotating Electrodes

L. Tong
Kesoku Engineering System Co., Ltd.,

The tertiary current distributions on rotating electrodes are studied in this work. An acid copper sulfate electrolyte is used within an electrochemical cell of practical dimensions. The distributions of ion concentrations are obtained by the two-dimensional fluid flow simulation and the solution of mass-transport equations based on axial symmetry.

Optimization of the Lithium Insertion Cell with Silicon Negative Electrode for Automotive Applications

R. Chandrasekaran, and A. Drews
Research and Advanced Engineering
Ford Motor Company
Dearborn, MI

The US Advanced Battery Consortium (USABC) has established goals for long term commercialization of advanced batteries for electric vehicle applications. In this work, a dual lithium-ion insertion cell with silicon as the negative electrode and an intercalation material as the positive electrode is modeled using COMSOL Multiphysics. Both are composite porous electrodes with binder, void ...

Three-Dimensional Percolation Properties Simulation of a Marine Coating Based on Its Real Structure Obtained from Ptychographic X-Ray Tomography - new

B. Chen[1], M. Guizar-Sicairos[2], G. Xiong[1], L. Shemilt[1], A. Diaz[2], J. Nutter[1], N. Burdet[1], S. Huo[1], F. Vergeer[3], A. Burgess[4], I. Robinson[1]
[1]London Centre for Nanotechnology, University College London, London, UK
[2]Paul Scherrer Institute, Villigen, Switzerland
[3]AkzoNobel Co. Ltd., Sassenheim, Netherlands
[4]AkzoNobel (UK) Co. Ltd., Tyne and Wear, UK

We present quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by ptychographic X-ray computed tomography (PXCT) [1-3]. We then use COMSOL Multiphysics® software to perform simulations on the acquired real 3D structure to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Three Dimensional Modeling of PEM Fuel Cells with Current Collection from the Gas Diffusion Layer

R. Pushpangadan[1], A. Soman[2], Arundas R.[2], N. G. Thoppan[2], S. P. Duttagupta[1]
[1]Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]College of Engineering, Munnar, Kerala, India

PEM fuel cells are very promising for portable applications. A key component of fuel cell is the flow field plate through which hydrogen will reach the anode, oxygen will reach the cathode and electron collection. Flow field plate made of silicon is not a good electrical conductor , so electrical contacts has to be attached to the Gas Diffusion Layer (GDL) for taking the power to outside ...

Hierarchical Modeling of Polymer Electrolyte Membrane Fuel Cells

J. Dujc[1], J.O. Schumacher[1]
[1]Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics (ICP), Winterthur, Switzerland

A finite element model of a polymer electrolyte membrane fuel cell (PEMFC) is described in this paper. We divide the PEMFC into two separate and parallel 2D regions which are connected by the 1D regions representing the membrane electrode assembly (MEA). COMSOL Multiphysics® was used as a development tool for hierarchical 1D MEA models. Here we present a 1D model that is based on seven governing ...

Effect of Mass Flow Induced by a Reciprocating Paddle on Electroplating

M. Fukukawa [1], L. Tong [1],
[1] Keisoku Engineering System Co. Ltd., Tokyo, Japan

The reciprocating paddle electrochemical plating cells have been widely applied in microelectronics industry [1-2].The reciprocating paddle is often driven over a cathode aspect horizontally by oscillation set outside a plating cell. The paddle reciprocating parallel to a plating side stirs the electrolyte around the plating aspect to improve electric current distribution on the cathode. The ...

Simulation and Design of Lithium Ion Battery Packs for the Altitude Conditions in Northern Chile

A. Mallco Carpio [1], M. Cortes Carmona [1],
[1] University of Antofagasta, Antofagasta Energy Center, Antofagasta, Chile

One of the most noticeable effects in loss of performance and capacity of thermal systems is produced by altitude. This causes that the density of a compressible fluid and the atmospheric pressure are considerably reduced, causing a decrease in electrical power and thermal systems. Given this, the packages of lithium ion batteries that use forced cooling by a compressible fluid, are directly ...