See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Cerebral vasospasm is a complication of subarachnoid hemorrhage and other neurosurgical emergencies that reduce blood flow to the brain. Part of the approach to management of vasospasm is to improve flow through the stenotic areas by reducing by decreasing blood viscosity and enhancing ... Read More
Acute respiratory distress syndrome (ARDS) is a severe lung disease caused by a variety of direct and indirect insults. The main treatment for ARDS is mechanical ventilation. The ventilation of fluid filled lungs involves the propagation of microbubbles over a layer of epithelial cells. ... Read More
Breathing motion is a major problem in radiotherapy of lung tumors. The development of techniques to adequately account for respiratory motion requires detailed knowledge about breathing dynamics. Thus, computer aided modeling of respiratory motion gains in importance. In this paper we ... Read More
The mitral valve apparatus is a complex and refined mechanism located between the left atrium and the left ventricle of the heart which can manifest various kinds of pathologies. In order to support identification of potentially critical conditions resulting from some typical ... Read More
Thermal ablation in the head and neck requires accurate thermal dose delivery to target tissue while protecting the structure and function of nearby tissue and organs. In this study, we present a method that allows importing Computed Tomography (CT) scans to COMSOL, in order to model ... Read More
Most simulations concerning electrical activation of human muscles are based on the modeling approach of Hodgkin and Huxley. Calculating the response of a muscle or nerve fiber membrane to an applied electrical field, needs to consider the “macroscopic”, extracellular potential ... Read More
Small nuclear ribonucleoprotein particles (snRNPs) are essential supramolecular complexes involved in pre-mRNA splicing, the process of post-transcriptional RNA modifications. The particles undergo complex assembly steps inside the cell nucleus in a highly dynamic compartment called the ... Read More
A dynamic mathematical model, based on physical and transport properties and mass and energy balances, was developed for the simulation of unsteady convective drying of agricultural products (fruits and vegetables) in static bed conditions. The model utilizes water sorption isotherm ... Read More
We are developing approximations of electrically anisotropic materials for use in novel imaging methods. Our modeling work in COMSOL comprises comparisons of anisotropic and layered models in terms of electrical conductivities measured using different strategies. We tested solution ... Read More
This paper will discuss the comprehensive solution adopted for converting the 3D digital/medical images directly into the computational model. The workflow using Simpleware Software – ScanIP and + ScanFE – will be illustrated including the option for directly exporting fully compatible ... Read More