Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

Water Quality Modeling of Drinking Water Storage Reservoir Noardburgum

N. Wolthek[1]
[1]Vitens NV, Zwolle, The Netherlands

The water storage reservoir at the WTP Noardburgum is used to even out demand and supply and ensure a stable drinking water production capacity. At the moment the rectangular reservoir has a single pipeline which serves as an inlet during the fill cycle and as an outlet during the draw cycle. This study aims to examine the current mixing characteristics of the reservoir and to investigate ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Analysis of Mash Tun Flow: Recommendations for Home Brewers - new

E. Gutierrez-Miravete[1], C. J. Walsh[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

The major steps in the beer making process are simple and with some skill, rather good brew can be produced using a common picnic cooler. First, grain (usually barley) is wetted and allowed to partially germinate before dried in a kiln (malting) Next, during mashing in a mash tun reactyor the malted grains are soaked in hot water in to extract the fermentable sugars and then rinsed slowly to ...

Modeling Heat and Moisture Transport During Hydration of Cement-Based Materials in Semi-Adiabatic Conditions - new

E. Hernandez-Bautista[1,2], D. Bentz[1], S. Sandoval-Torres[2], P. Cano-Barrita[2]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA
[2]Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca, Oaxaca, México

The process of accelerated curing of pre-cast concrete has a significant importance in the thermal behavior of concrete. A multiphysics model that describes hydration and heat and mass transport in cement based materials was developed. The hydration reactions are described by a maturity function that uses the equivalent time concept, thereby describing the change in the degree of hydration based ...

Modeling the Chemical Decomposition of Sodium Carbonate Peroxyhydrate

M. Brundu[1], V. Guida[1]
[1]Procter & Gamble Italia, Pomezia, Roma, Italy

The challenge with the use of Sodium Carbonate Peroxyhydrate (Na2CO3*1.5H2O2) as a bleach source in dry detergent formulations is its lower stability in comparison with other materials, and the risk of quality losses of the product over the shelf life. The issue can be solved with the understanding and modeling of the decomposition mechanism of the powder. It is well known that the decomposition ...

The Effect of Electrolyte Flow Slots in Tooling Electrodes on Workpiece Surface Finish in Electrochemical Machining

B. Bingham[1]
[1]Oregon State University, Corvallis, OR, USA

Electrochemical machining (ECM) uses electrolysis to precisely remove material at high rates. ECM has many advantages over conventional machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually independent of material hardness or strength, and excellent surface finishes. However, challenges can arise during the design of the tooling electrode when ...

Diffusion and Reaction in Fe-Based Catalyst for Fischer-Tropsch Synthesis Using Micro Kinetic Rate Expressions - new

A. Nanduri[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

Fischer-Tropsch synthesis (FTS) is a highly exothermic polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, often known as syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column Reactors (SBCR) are widely employed for FTS processes. The scale-up of MTFBR is complicated by the ...

Comparison of Diffusion Flux Models for Fischer-Tropsch Synthesis

A. Nanduri [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

The Fischer-Tropsch Synthesis (FTS) is a highly exothermic condensation polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, the latter of which is often called syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column reactors (SBCR) are widely employed for FTS processes [1]. To ...

Electro-Chemical Etching & Deposition of a Super Alloy Using Tertiary Current Distribution Method - new

M. Yeoman[1], R. Damodharan[1]
[1]Continuum Blue Ltd., Ystrad Mynach, UK

The application of super-alloys has grown up in numbers in the industries like aerospace, automotive, nuclear, thermal power plant & medical implants. The initial cost of prototyping and the selection of suitable manufacturing methods & test fixtures made by electrochemical machining (ECM) has proven to be expensive process especially where tolerances are extremely tight on the nanometre scale. ...