Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Comparison of Diffusion Flux Models for Fischer-Tropsch Synthesis

A. Nanduri [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

The Fischer-Tropsch Synthesis (FTS) is a highly exothermic condensation polymerization reaction of syngas (CO+H2) in the presence of Fe/Co/Ru-based catalysts to produce a wide range of paraffins, olefins and oxygenates, the latter of which is often called syncrude. Multi-Tubular Fixed Bed Reactors (MTFBR) and Slurry Bubble Column reactors (SBCR) are widely employed for FTS processes [1]. To ...

COMSOL Multiphysics® Simulation of 3D Single-Phase Transport in a Random Packed Bed of Spheres - new

A. Dixon[1]
[1]Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Packed beds are important in the chemical industries. Computational fluid dynamics (CFD) can simulate detailed flow and scalar transport in packed beds for improved understanding and quantitative information. We present simulations of single-phase gas flow, conjugate heat transfer and isothermal dispersion of mass in a 3D model of a randomly-packed bed (tube-to-particle diameter ratio = 5.96) of ...

Computational Fluid Dynamics for Microreactors Used in Catalytic Oxidation of Propane

S. Odiba[1], M. Olea[1], S. Hodgson[1], A. Adgar[1]
[1]Teesside University, School of Science and Engineering, Middlesbrough, United Kingdom

This research deals with the design of suitable microreactors for the catalytic oxidation of volatile organic compound (VOCs), using propane as a model molecule. The microreactor considered consists of eleven parallel channels, in which an Au/Cr/γ-Al2O3-catalyzed combustion reaction takes place. Each channel is 0.5 mm diameter and 100 mm long. The catalytic microreactor was simulated for ...

Simulation of Gas/Liquid Membrane Contactor with COMSOL Multiphysics®

N. Ghasem[1], M. Al-Marzouqi[1], N. Abdul Rahim[1]
[1]UAE University, Al-Ain, United Arab Emirates

A comprehensive mathematical model that includes mass and heat transfer was developed for the transport of gas mixture of carbon dioxide and methane through hollow fiber membrane (HFM) contactor. COMSOL Multiphysics® was used in solving the set of partial, ordinary and algebraic equations. The model was based on "non-wetted mode" in which the gas mixture filled the membrane pores for ...

Modeling Heat and Moisture Transport During Hydration of Cement-Based Materials in Semi-Adiabatic Conditions - new

E. Hernandez-Bautista[1,2], D. Bentz[1], S. Sandoval-Torres[2], P. Cano-Barrita[2]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA
[2]Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca, Oaxaca, México

The process of accelerated curing of pre-cast concrete has a significant importance in the thermal behavior of concrete. A multiphysics model that describes hydration and heat and mass transport in cement based materials was developed. The hydration reactions are described by a maturity function that uses the equivalent time concept, thereby describing the change in the degree of hydration based ...

Modeling Scheil Cooling of a Metal Alloy: Thermodynamic and Multiphysics Solidification

T. Marin-Alvarado [1],
[1] M4Dynamics, Toronto, ON, Canada

During solidification of a multicomponent liquid, either a metal alloy, a sulphide matte or an oxide slag system, the process is highly dependant not only on temperature but in composition as well. The thermodynamic properties of the system will dictate what phases or mixtures precipitate from the liquid and their compositions, which are different from the original composition of the liquid, ...

Multiphase Porous Media Model for Microwave Drying Spherical Potatoes - new

H. Zhu[1], T. Gulati[2], K. Huang[1], A.K. Datta[2]
[1]Sichuan University, Chengdu, Sichuan, China
[2]Cornell University, Ithaca, NY, USA

Mathematical description of microwave drying requires the solution of two different physics: electromagnetics in the microwave oven cavity and food material and, transport process (mass, momentum and heat transport) in the food material. Maxwell’s equations for electromagnetics were solved using the RF Module using the GMRES iterative solver with the GeometricMultigrid preconditioner. Mass, ...

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production - new

L. F. de Souza[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

A simple steady-state photo-fermentative biochemical model was developed using the COMSOL Multiphysics'® Transport of Diluted Species physics interface. A dimensionless model seeks optimal physical parameters based on given biochemical parameters found in literature. A parametric sweep of the physical parameters is enabled without altering the mesh. Other limitations can be easily added to this ...

Modelagem da Perda de Umidade da Banana Durante o Processo de Secagem

J. P. Wojeicchowski [1], A. P. Ramos [2], J. S. Sousa [1], L. G. Maciel [1], M. M. Pariona [1],
[1] Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
[2] Universidad Peruana Unión, Juliaca, Peru

O objetivo deste trabalho foi modelar a perda de umidade de bananas Caturra com os modelos empíricos e com o software COMSOL Multiphysics, definindo os coeficientes convectivo de transferência de massa e difusivo. O valor obtido para coeficiente de difusão, com base no ajuste matemático da 2ª Lei de Fick para cilindros foi de 1,89.10-9 m²/s. O valor do coeficiente convectivo de transferência de ...

Modelling Heat and Mass Transfer in Microreactor for Methanol to Hydrocarbons

P. A. Delou [1,3], V. Degirmenci [2,3],
[1] Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
[2] University of Warwick, Coventry, United Kingdom
[3] Queen’s University Belfast, Belfast, United Kingdom

Recently, increasing availability of natural gas, due to the shale gas, raises the attention to the conversion of methane. Methanol-to-Hydrocarbons reaction (MTH) plays an important role in this route where methanol synthesized through syngas is converted into hydrocarbons, such as Gasoline. In this study heat and mass transfer for MTH reaction over ZSM-5 as catalyst for an specific microreactor ...