Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Hydrogel-Based Controlled Drug Delivery System for Breast Cancer Treatment - new

K. Cluff[1], L. Saeednia[2], H. Mehraein [1], R. Asmatulu[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA

Polymeric hydrogel is a promising class of drug delivery systems with the controlled release behavior in the body. In-situ forming hydrogels can be injected into the body as a fluid which forms a gel within the body tissue and improve the efficacy of the drugs. Various polymers have been used as in-situ hydrogel formulations. These polymeric formulations can form gels at body temperature while ...

COMSOL Multiphysics® Simulation of 3D Single-Phase Transport in a Random Packed Bed of Spheres - new

A. Dixon[1]
[1]Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Packed beds are important in the chemical industries. Computational fluid dynamics (CFD) can simulate detailed flow and scalar transport in packed beds for improved understanding and quantitative information. We present simulations of single-phase gas flow, conjugate heat transfer and isothermal dispersion of mass in a 3D model of a randomly-packed bed (tube-to-particle diameter ratio = 5.96) of ...

Modeling Scheil Cooling of a Metal Alloy: Thermodynamic and Multiphysics Solidification

T. Marin-Alvarado [1],
[1] M4Dynamics, Toronto, ON, Canada

During solidification of a multicomponent liquid, either a metal alloy, a sulphide matte or an oxide slag system, the process is highly dependant not only on temperature but in composition as well. The thermodynamic properties of the system will dictate what phases or mixtures precipitate from the liquid and their compositions, which are different from the original composition of the liquid, ...

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production - new

L. F. de Souza[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

A simple steady-state photo-fermentative biochemical model was developed using the COMSOL Multiphysics'® Transport of Diluted Species physics interface. A dimensionless model seeks optimal physical parameters based on given biochemical parameters found in literature. A parametric sweep of the physical parameters is enabled without altering the mesh. Other limitations can be easily added to this ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Modelagem da Perda de Umidade da Banana Durante o Processo de Secagem

J. P. Wojeicchowski [1], A. P. Ramos [2], J. S. Sousa [1], L. G. Maciel [1], M. M. Pariona [1],
[1] Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
[2] Universidad Peruana Unión, Juliaca, Peru

O objetivo deste trabalho foi modelar a perda de umidade de bananas Caturra com os modelos empíricos e com o software COMSOL Multiphysics, definindo os coeficientes convectivo de transferência de massa e difusivo. O valor obtido para coeficiente de difusão, com base no ajuste matemático da 2ª Lei de Fick para cilindros foi de 1,89.10-9 m²/s. O valor do coeficiente convectivo de transferência de ...

Modeling Transient Adsorption/Desorption Behavior in a Gas Phase Photocatalytic Fiber Reactor

S. Denys [1], J. Van Walsem [1],
[1] Sustainable Energy, Air & Water Technology, Department of Bioscience Engineering, University of Antwerp, Belgium

Integration or retrofitting of photocatalytic air purifying units into HVAC (Heating, Ventilation and Air Conditioning) equipment is an interesting approach for abating indoor air pollution and removal of volatile organic compounds. An attractive possibility is the use of glass fiber filter mats, coated with a photocatalyst. The thin, long fibers not only offer the advantage of exposing a large ...

CAE-Based Design and Optimization of a Plasma Reactor for Hydrocarbon Processing

C. Soares [1], F. A. Cassini [1], N. Padoin [1],
[1] Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil

Plasma reactors can be applied to the conversion of waste, biomass and fuels to synthesis gas (mixture of hydrogen and carbon dioxide) with efficiencies as higher as 90-95% and low energy demand, depending on the design optimization. In this work, a multi-step approach was applied to the investigation of the main physics involved in a rotating gliding arc (RGA) discharge reactor. COMSOL ...

Modeling Heat and Moisture Transport During Hydration of Cement-Based Materials in Semi-Adiabatic Conditions - new

E. Hernandez-Bautista[1,2], D. Bentz[1], S. Sandoval-Torres[2], P. Cano-Barrita[2]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA
[2]Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca, Oaxaca, México

The process of accelerated curing of pre-cast concrete has a significant importance in the thermal behavior of concrete. A multiphysics model that describes hydration and heat and mass transport in cement based materials was developed. The hydration reactions are described by a maturity function that uses the equivalent time concept, thereby describing the change in the degree of hydration based ...

Computational Optimization of Battery Grid for Efficiency and Performance Improvement

V. Panneerselvam [1], R. C. Thiagarajan [1]
[1] ATOA Scientific Technologies Pvt Ltd, Bengaluru, India

Battery grids are critical system used in automobile, renewable energy, medical devices and mobile phones. Research efforts are directed to increase energy density, longevity and reduce the cost. This paper is related to computational optimisation of lead acid battery for efficiency and performance improvement. Battery grid is the precursor for the active material and current distribution in ...