Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Soil as Bioreactor: Reaction-diffusion Processes and Biofilms

M. Richter[1], S. Moenickes[2], O. Richter[2], T. Schröder[1]
[1]BASF SE, Agricultural Center, Limburgerhof, Germany
[2]Institute of Geoecology, TU Braunschweig, Braunschweig, Germany

In a soil pore, water flows through the biofilm, where the density of the latter was assumed to represent a flow resistance. This mechanism was implemented as a local change of fluid viscosity proportional to local biofilm density. It was assumed that diffusive substrate transport is possible through the biofilm region such that the biofilm was able to degrade the substance. Maximum flow ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

Modeling with COMSOL the Interaction Between Subducting Plates and Mantle Flow

J. Rodríguez-González[1], A.M. Negredo[1], P. Petricca[2], and E. Carminati[2][3]

[1]Departamento de Geofísica y Meteorología, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid, Spain
[2]Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Roma, Italy
[3]Istituto Geologia Ambientale e Geoingegneria – CNR, Roma, Italy

Subduction processes have great importance as are related to volcanism and earthquake occurrence. Old and cold plates should subduct steeper than younger ones, but the subduction angle is highly variable and does not always correlate with the age of the plates. Some researchers propose a global or net westward drift of the lithosphere relative to the mantle and this assessment is still a matter ...

COMSOL Implementation for Upscaling of Two-Phase Immiscible Flows in Communicating Layered Reservoirs

X. Zhang, A. Shapiro, and E.H. Stenby
Center for Energy Resources Engineering, Technical University of Denmark, Lyngby, Denmark

Waterflooding is widely used in secondary oil recovery. The physics is described by the model of two-phase flow in porous media. The aim of the present work is to implement this model in COMSOL Multiphysics and to simulate the process of waterflooding. It is analyzed in two dimensions. We use layered reservoir in our study. The numerical implementation is validated, comparing with analytical ...

Absorbing Boundary Domain for CSEM 3D Modeling

J. Park[1], T.I. Bjørnarå[1], and B.A. Farrelly [2]
[1]Norwegian Geotechnical Institute(NGI), Oslo, Norway
[2]MultiField Geophysics AS, Norway

In the study, we present an efficient absorbing boundary domain technique whose main application is the 3D finite element (FE) modelling of the so-called controlled-source electromagnetic (CSEM) data, collected for the geophysical exploration. The developed technique is based on the real-value exponentially-stretched coordinates. We have implemented the developed technique using the user ...

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations - new

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole.

Modelling of Seismoelectric Effects

B. Kröger[1], U. Yaramanci[2], and A. Kemna[1]
[1]1 University of Bonn
[2]GGA Hannover

We present the results of full-waveform time-dependent finite-element modelling of coupled seismoelectromagnetic wave propagation in fluid-saturated porous media. To describe the seismoelectric response of the system a new set of equations is developed which couple the poroelasticity theory and Maxwell’s equations via flux/force transport equations in a thermodynamical sense. The coupling ...

On Boundary Conditions for CSEM Finite Element Modeling, I

J. Park[1], T. Bjornara[1], H. Westerdahl[2], and E. Gonzalez[2]
[1]Norwegian Geotechnical Institute (NGI), Oslo, Norway
[2]StatoilHydro Research Center, Norway

In this study, we propose an absorbing boundary domain (or condition), which is really simple but still efficient for the 2.5D finite element (FE) analysis. The main application is to simulate the electromagnetic (EM) waves related to the marine controlled source electromagnetic (CSEM) method, where the EM wave propagates with extremely low frequency in the conductive media. In the near future, ...

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]

[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by pure H2O. We considered a 1-D geometry and we developed a dynamic model that presents a clear interface ...

The Dissolution and Transport of Radionuclides From Used Nuclear Fuel in an Underground Repository

Y. Beauregard[1], M. Gobian[2], and F. Garisto[2]
[1]University of Western Ontario, London, ON, Canada
[2]Nuclear Waste Management Organization, Toronto, ON, Canada

In the Canadian concept for a deep geological repository for used nuclear fuel, the used fuel bundles are placed in containers consisting of an inner steel vessel surrounded by a copper shell. The filled containers are placed in excavated tunnels or boreholes and surrounded by a compacted bentonite clay buffer material. In the event of container failure, the rate of migration of radionuclides ...