Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Geomagnetic Modeling with COMSOL Multiphysics® Software - new

G. Ha[1], S. S. Kim[1], J. H. Kim[1]
[1]Chungnam National University, Daejeon, Korea

Here we aim to advance geomagnetic modeling approaches using COMSOL Multiphysics® software and improve the degree of detail that can be obtained from the measured magnetic field. First, we carried out benchmark tests by comparing the computed results using the widely used analytic solutions for rectangular bodies with arbitrary direction of magnetization with those from the AC/DC Module of ...

Development of a COMSOL Application for the Efficient Evaluation of an Engineered Barrier System

D. Sampietro [1], E. Abarca [1], H. von Schenck [2], J. Molinero [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radioactive waste repositories include barriers that work to contain the waste, thereby protecting human health and the environment. In deep geological disposal systems, barriers include the natural geological barrier and the engineered barrier system (EBS). The ability of the EBS to limit groundwater flow is important and optimized design solutions are often sought by means of numerical ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.

Effect of S-p Relation Model on DNAPL Migration Simulation Result

H. Ishimori[1], and K. Endo[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

To consider effective counter measures against ground water contaminated with dense non-aqueous phase liquids (DNAPLs) such as chlorinated solvents, it is first important to understand the mechanism of their migration in heterogeneous aquifer. In addition, numerical analysis models to simulate such a complex migration in heterogeneous aquifer are required. The displacement pressure, which ...

Absorbing Boundary Domain for CSEM 3D Modeling

J. Park[1], T.I. Bjørnarå[1], and B.A. Farrelly [2]
[1]Norwegian Geotechnical Institute(NGI), Oslo, Norway
[2]MultiField Geophysics AS, Norway

In the study, we present an efficient absorbing boundary domain technique whose main application is the 3D finite element (FE) modelling of the so-called controlled-source electromagnetic (CSEM) data, collected for the geophysical exploration. The developed technique is based on the real-value exponentially-stretched coordinates. We have implemented the developed technique using the user ...

Non Linear Mechanical and Poromechanical Analyses: Comparison with Analytical Solutions

M. Souley, and A. Thoraval
Ecole des Mines
Parc de Saurupt, France

The long-term behaviour of the underground excavations is a social and economic challenge particularly in the contexts of post-mining or radioactive waste storage. Numerical modelings are currently used to understand and forecast the complex behaviour of rock mass around the underground cavities. In order to accurately perform these multiphysics modelings at high space and time scales, it is ...

Delamination of Sub-Crustal Lithosphere - new

P. Vincent[1], E. Humphreys[2]
[1]College of Earth, Ocean, & Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
[2]Department of Geological Sciences, University of Oregon, Eugene, OR, USA

Introduction: Lithospheric delamination beneath the western U.S. is believed to be the driving mechanism responsible for the evolution of magmatic and topographic features observed at the surface in the western U.S.. This process requires hot asthenosphere to be in contact with the underside of cold sub-crustal lithosphere and believed to be initiated by the Yellowstone hot spot plume that due ...

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations - new

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole.

Diverse Models for Graphite Brick Deformation and Stress State in UK AGR Nuclear Reactors

J. Burrow [1], A. Bond [1],
[1] Quintessa Ltd, United Kingdom

The UK Advanced Gas-cooled Reactor fleet, operated by EDF Energy, utilize a graphite core consisting of a lattice of around 3000 annular bricks. Due to irradiation, oxidation and thermal effects, the bricks deform and loose mass as they age. Of key concern is the late-life behavior of the bricks, in particular the predicted time at which brick shrinkage reverses into expansion, generating large ...

Effect of Parallel Strip Water Source Spacing on Lateral Infiltration Flux

M. García-Serrana [1], J. L. Nieber [1], J. S. Gulliver [1],
[1] University of Minnesota, Minneapolis, MN, USA

This analysis evaluates the importance of the lateral component of flow on the infiltration of water from parallel strip sources of water on the soil surface. Flow from such sources will be two-dimensional, having both vertical and lateral components. Here we examine the effect of the spacing between parallel strip sources and the texture of the soil on the rate of infiltration through a given ...