See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
Geophysics and Geomechanicsx

Numerical Simulation of Quasi-steady-state Gas Flow in a Landfill

Q. Zheng [1],
[1] Zhejiang University, Hangzhou, Zhejiang, China

Landfill is currently the most dominating method to dispose wastes, which are caused by the lives of residents and constructions of cities and towns. Because of large amounts of organic substances in landfills, they will undergo continuous microbial degradation, which generates a lot of ... Read More

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are ... Read More

Simulated Annealing and Genetic Algorithm Optimization using COMSOL Multiphysics®: Applications to the Analysis of Ground Deformation in Active Volcanic Areas

A. Manconi[1], P. Tizzani[1][2], G. Zeni[1], S. Pepe[1], and G. Solaro[1][2]
[1]IREA, CNR, Napoli, Italy
[2]INGV, Osservatorio Vesuviano, Napoli, Italy

We combine the potentiality of COMSOL with Monte Carlo optimization procedures, referred to as Simulated Annealing and Genetic Algorithm, in order to analyze and interpret ground deformation measured in active volcanic areas. Through MATLAB® subroutines, we use FE (Finite Element) ... Read More

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which ... Read More

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone ... Read More

Groundwater Modeling as an Assessment Tool for Underground Mines Located in Fractured Massifs

J. Font-Capó[1], A. Nardi[1], M. Mendoza [2], E. Ruiz[2], S. Jordana[1], J. Molinero[1], P. Trinchero[1], J. Vargas[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Amphos 21 Perú, Lima, Perú
[3]Worley Parson/TWP, Lima, Perú

Some of the present metallic ores mines are located in areas formed by a heterogeneous fractured massif where groundwater flows preferentially through fractures. Underground mining in these zones can cause impacts in streams, lakes and change the natural water balance of the ... Read More

3D Modeling of Fracture Flow in Core Samples Using ?-CT Data

S. Hoyer[1], U. Exner[2], M. Voorn[1], A. Rath[3]
[1]Department of Geodynamics and Sedimentology, University of Vienna, Austria
[2]Museum of Natural History, Vienna, Austria
[3]OMV ESG-D Production Geology, Vienna, Austria

Knowledge on flow behavior in fractured reservoir rocks is of great interest in petroleum engineering as well as for geothermal assets. Due to the big difference of magnitude (fracture aperture: ~?m, lateral extension of reservoirs ~km), modeling of discrete fracture flow is not ... Read More

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of ... Read More

Magnetotelluric Response Distortion Over Rugged Topography

D. Rizzello[1], P. Canepa[1], E. Armadillo[1]
[1]DISTAV - University of Genova, Genova, Italy

Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, ... Read More

Can we use Aquifers to Monitor Magma Chambers? Using COMSOL Multiphysics® to Investigate Subsurface Strain Changes and Their Effect on Hydrological Systems new

K. Strehlow[1], J. Gottsmann[1], A. Rust[1]
[1]University of Bristol, Bristol, UK

Groundwater-bearing geological layers respond to and modify the surface expressions of magmatic activity, and they can also become agents of volcanic unrest themselves. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many ... Read More