Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Permeability in Fragmented Materials and its Application to Underground Mining

S. Palma [1], R. Castro [1], A. Hekmat [1],
[1] Mining Engineering Department, Block Caving Laboratory, University of Chile, Santiago, Chile

The block caving mine is considered by the mining industry as one of the natural replacements of the current open cut mines in the near future. The block caving technique is based on the extraction of small broken rocks, created by blasted initially large solid rocks, and the fracture of compact material located in the upper layers because the stress propagation generated by the extraction ...

2-Dimensional Incompressible and Compressible Mantle Convection - new

Changyeol Lee[1]
[1]Faculty of Earth and Environmental Sciences, Chonnam National University, Gwangju, Republic of Korea

COMSOL Multiphysics® software has been used in computational geodynamics for years. Because very high pressure in the mantle even significantly compressed the mantle up to ~40%, it is crucial to consider the mantle compressibility in computational geodynamics. COMSOL Multiphysics allows consideration of mantle compressibility using the CFD Module and I benchmarked COMSOL Multiphysics using ...

Modeling Contaminant Diffusion in Highly Complex Rock Structures

N. Diaz[1], A. Jakob[1], L. Van Loon[1], and D. Grolimund[2]
[1]Paul Sherrer Institut NES/LES, Villigen PSI, Switzerland
[2]Paul Sherrer Institut NES/SLS, Villigen PSI, Switzerland

Opalinus clay is currently being proposed as a potential host rock for radioactive waste repository in deep geological formation. It is then important for performance assessments to understand the transport properties of such rocks. Clay materials are characterized by low hydraulic conductivities and diffusion is assumed to be the main transport mechanism. The studied rock is a complex assembly ...

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time frames involved. Performing a safety analysis of a radioactive waste disposal system requires therefore ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki
Japan

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Coupling COMSOL’s Subsurface Flow Module with Environmental Geochemistry in PHREEQC

L. Wissmeier[1], and D. A.Barry[2]
[1]GIT HydroS Consult GmbH, Freiburg, Germany
[2]EPFL, Lausanne, Switzerland

We present a software tool for simulations of subsurface flow and solute transport in combination with comprehensive intra-phase and inter-phase geochemistry. The software uses PHREEQC as a reaction engine to COMSOL Multiphysics®. The coupling with PHREEQC gives major advantages over COMSOL’s built-in reaction capabilities, i.e., the soil solution is speciated from its element composition ...

Reactive Transport Processes in Compacted Bentonite

A.E. Idiart[1], M. Pekala[1], A. Nardi[1], D. Arcos[1]
[1]Amphos 21, Barcelona, Spain

The Swedish Organization for Radioactive Waste (SKB) is considering disposal High Level Wastes in a deep underground repository. Bentonite clay is planned to be used in the near-field of the waste packages as buffer material. The buffer is expected to provide a favorable environment with limited radionuclide migration due to slow diffusion and retardation by sorption and cation-exchange effects. ...

Using COMSOL for Optimal Design of Engineering Barriers of Nuclear Waste Repositories

L.M. de Vries[1], A. Nardi[1], A.E. Idiart[1], P. Trinchero[1], J. Molinero[1], F. Vahlund[2], H. von Schenck[2]
[1]Amphos 21, Barcelona, Spain
[2]Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden

The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for final disposal of spent fuel and radioactive waste. SKB operates SFR, an underground waste repository in crystalline rock. The evolution of groundwater flow within the repository needs to be estimated considering different options for the design of the engineered barriers. The goal is to predict the effects of flow and ...

Modeling Large-Scale Mine Dewatering by Using Subsurface Flow Module in COMSOL Multiphysics

J. Molinero[1], A. Nardi[1], P. Trinchero[1]
[1]Amphos 21, Barcelona, Spain

Groundwater is a key factor affecting mine operations worldwide. On one hand, both underground and open pit mines need to pump out groundwater in order to proceed with mineral extraction and increase the stability of rock slopes. On the other hand, groundwater abstractions can produce undesired environmental and social impacts, which should be anticipated in the environmental impact assessments ...

Modeling Cracking in Quasi-Brittle Materials Using Isotropic Damage Mechanics - new

T. Gasch [1], A. Ansell [1],
[1] KTH Royal Institute of Technology, Stockholm, Sweden

An extension of the Solid Mechanics interface in COMSOL Multiphysics® is presented to analyze localized deformations of quasi-brittle materials, for example cracking in concrete. This is achieved by implementing an isotropic damage mechanics constitutive law, which is combined with both a local and a non-local regularization technique to ensure mesh objectivity. The implementation is made using ...