Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Dissolution and Transport of Radionuclides From Used Nuclear Fuel in an Underground Repository

Y. Beauregard[1], M. Gobian[2], and F. Garisto[2]
[1]University of Western Ontario, London, ON, Canada
[2]Nuclear Waste Management Organization, Toronto, ON, Canada

In the Canadian concept for a deep geological repository for used nuclear fuel, the used fuel bundles are placed in containers consisting of an inner steel vessel surrounded by a copper shell. The filled containers are placed in excavated tunnels or boreholes and surrounded by a compacted bentonite clay buffer material. In the event of container failure, the rate of migration of radionuclides ...

Delamination of Sub-Crustal Lithosphere - new

P. Vincent[1], E. Humphreys[2]
[1]College of Earth, Ocean, & Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
[2]Department of Geological Sciences, University of Oregon, Eugene, OR, USA

Introduction: Lithospheric delamination beneath the western U.S. is believed to be the driving mechanism responsible for the evolution of magmatic and topographic features observed at the surface in the western U.S.. This process requires hot asthenosphere to be in contact with the underside of cold sub-crustal lithosphere and believed to be initiated by the Yellowstone hot spot plume that due ...

Numerical Simulation of Quasi-steady-state Gas Flow in a Landfill

Q. Zheng [1],
[1] Zhejiang University, Hangzhou, Zhejiang, China

Landfill is currently the most dominating method to dispose wastes, which are caused by the lives of residents and constructions of cities and towns. Because of large amounts of organic substances in landfills, they will undergo continuous microbial degradation, which generates a lot of landfill gas. The gas consists mainly of CH4, CO2, O2 and N2, and it is also a promising source of renewable ...


管伟明 [1], 聂欣 [1],
[1] 新疆大学,乌鲁木齐,新疆,中国


A Coupled Thermal, Chemical and Mechanical Model using COMSOL Multiphysics® Software

Xiang Sun [1], Hao Luo [2], Xiaoxia Guo [1], Yuelang Jin [3], Tingting Luo [1]
[1] Dalian University of Technology, Dalian, China
[2] University of Cambridge, Cambridge, UK
[3] Tongji University, Shanghai, China

Many numerical coupling thermo-hydro-mechanical-chemical models for methane hydrate bearing sediments(MHBS) have been proposed to analyze the mechanical behavior of MHBS during methane gas production. However, most of them are based on finite differential method (FDM) or finite volume method (FVM). Few models for MHBS based on finite element method (FEM) and Galerkin variation principle are ...

Deep-Seated Spreading Model Tested on Etna Mount with FEM

F. Pulvirenti[1,2], M. Aloisi[1], M. Mattia[1], and C. Monaco[2]
[1]Istituto Nazionale di Geofisica e Vulcanologia sezione di Catania
[2]Università di Catania

Structural, morphological and ground deformation studies suggest that the eastern flank of Mt. Etna (eastern Sicily) is spreading seaward.  According to the deep-seated spreading model, both the volcanic edifice and its uppermost basement are spreading eastwards because of magma inflation processes related to a dike complex located at a depth between the summit craters and the Valle del ...

Numerical Simulation of Temperature and Stress Fields in the Rock Heating Experiment

P. Rálek[1], M. Hokr[1]
[1]Technical University in Liberec, Liberec, Czech Republic

Presented work is motivated by pre-realization phase of rock heating experiment in underground, testing properties for cyclic energy storage. Heating unit, installed in large borehole from end of a tunnel, is fixed to the rock face with the geo-polymer. Rest of the borehole is filled with isolation material. We used the Heat Transfer Module and the Structural Mechanics Module in COMSOL for ...

Rheological and Topographical Controls on Deformation Due to a Shallow Magma Reservoir - new

J. H. Johnson[1]
[1]University of Bristol School of Earth Sciences, Bristol, UK

The use of high-resolution topography in the finite element model demonstrates that deformation from a shallow pressure source can be dramatically affected by overlying relief, not only in magnitude, but also in azimuth. This result is significant as it allows traditionally anomalous data to be evenly weighted during inversions for magma reservoir parameters. The result that surface ...

New Thermo-Mechanical Fluid Flow Modeling of Multiscale Deformations in the Levant Basin

M. Belferman [1], R. Katsman [1], A. Agnon [2], Z. Ben-Avraham [1],
[1] The Dr. Moses Strauss Department of Marine Geosciences, Leon H.Charney School of marine sciences. Haifa University, Mt. Carmel, Haifa, Israel
[2] Institute of Earth Sciences, The Hebrew University, Jerusalem, Israel

The Levant has been repeatedly devastated by numerous earthquakes since prehistorical times. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component, in COMSOL Multiphysics simulation environment. The latter is modeled on a ...

Solution of Poroelastic Equations with Different Base Variables Using Equation-based Modeling

M. H. Akanda [1], Y. Cao [1], A. J. Meir [1],
[1] Department of Mathematics & Statistics, Auburn University, Auburn, AL, USA

Poroelasticity equations describe the interaction between fluid flow and solids deformation within a porous medium. Modeling of poroelasticity is coupling between elastic deformation of porous materials and Darcy’s law. Poroelasticity has numerous real world applications such as in reservoir engineering, bio-engineering, environmental engineering etc. We have used quasi-static poroelastic ...