Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Benchmarking Tailored Formulations of Multiphase Flow in Porous Media

Á. Sainz [1,2], A. Nardi [1], E. Abarca [1], F. Grandía [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Université Toulouse III - Paul Sabatier, Toulouse, France

Nowadays, gas and nuclear waste storage, shale gas and EOR exploitation rise the need to understand and predict the fate of multiphase flows in the underground. Various formulations for multiphase flow arise from different linear combinations of governing equations and choice of associated unknowns. Each formulation has its own benefits and drawbacks; and the optimal may vary depending on the ...

Integration of the DeProF Model for Two-Phase Flow in P.M. into the Subsurface Flow Module

M. S. Valavanides [1], E. D. Skouras [2], A. N. Kalarakis [3], V. N. Burganos [2],
[1] TEI Athens, Athens, Greece
[2] FORTH/ICE-HT, Patras, Greece
[3] TEI of Western Greece, Patras, Greece

Relative permeability maps for steady-state two-phase flow in porous media, delivered by implementing the DeProF model [1] algorithm, were integrated within COMSOL Multiphysics® software [2] to resolve field-scale flows in porous media. The mechanistic model DeProF [1], predicts the relative permeability of oil and water in terms of the capillary number, Ca, the oil/water flowrate ratio, r, ...

Multiphysics Modelling of Standing Column Well and Implementation of Heat Pumps Off-Loading Sequence

A. Nguyen[1], P. Pasquier[1], D. Marcotte[1]
[1] Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby allowing the effect of the pumped water temperature on the capacity and coefficient of performance of the heat ...

Remote Sensing of Electromagnetically Penetrable Objects: Landmine and IED Detection

R. Eze [1], G. Sivulka [2], ,
[1] City University of New York - LaGuardia Community College, Long Island City, NY, USA
[2] Regis High School, New York, NY, USA

The detection, characterization, and classification of underground environmental hazardous objects [mines, IEDs, and other unexploded military hardware] is a worldwide problem that needs urgent attention and solution. While electromagnetic sensor technologies have been applied to identify these hazards, increasingly low dielectric contrast between newer, sophisticated landmines, and complex ...

Simulation of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow

R. Hu [1], Q. Liu [1],
[1] School of Earth Science and Engineering, Hohai University, Nanjing, China

Based on the heat transfer and seepage theory in porous media, a 2D cross section of a horizontal AGF project is selected and a numerical model is set up, which is based on full coupling of temperature and flow fields by combining physical interfaces of Darcy's Law and Heat Transfer in Porous Media. The simulation results show that freezing wall appears in an asymmetrical shape as the ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Investigation of Hydraulic Fracture Re-Orientation Effects in Tight Gas Reservoirs

B. Hagemann[1], J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal-Zellerfeld, Germany

In tight gas formations where the low matrix permeability prevents successful and economic production rates, hydraulic fracturing is required to produce a well at economic rates. As production from the well and its initial fracture declines, re-fracturing treatments are required to accelerate recovery. The orientation of the following hydraulic fracture depends on the actual stress-state of the ...

Energy Pile Simulation – an Application of THM-Modeling - new

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical coupling. The fluctuating thermal regime may affect the deformation of pile and surrounding ground as effect of ...

Numerical Study of Flux Models for CO2 - Enhanced Natural Gas Recovery and Potential CO2 Storage in Shale Gas Reservoirs - new

N. Prajapati[1], P. L. Mills[1]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

This work encompasses different physics involved in fluid flow in shale gas reservoir. Non-linear equations for fluid flow are solved with COMSOL Multiphysics® PDE module. It focuses on comparing the performance of various species transport flux models by accounting for inter-molecular interactions and gas-rock interactions.

Simulating Hydraulic Fracturing and Contaminant Transport with MATLAB® and COMSOL Multiphysics® Software

D. W. Pepper [1], E. Nabizadeh [1], J. Waters [2],
[1] University of Nevada Las Vegas, Las Vegas, NV, USA
[2] Los Alamos National Laboratory, Los Alamos, NM, USA

Hydraulic fracturing, or fracking, is a technique used to extract oil and gas in shale rock. A mixture of water, sand, and chemicals are pumped into the well at high pressures to keep the fissures open, which allows the gas to flow. Although intermediate casings are inserted into the well to prevent the fracturing fluid or oil or gas from entering the water supply at the ground water layer ...