Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Calibration of a Geothermal Energy Pile Model - new

R. Caulk[1], J. McCartney[2], E. Ghazanfari[1]
[1]University of Vermont, Burlington, VT, USA
[2]University of Colorado, Boulder, CO, USA

In this study, a model of in-situ geothermal energy piles was constructed using COMSOL Multiphysics® software. Geothermal energy piles serve two purposes, first to transfer building load into the subsurface, but also to extract thermal heat from surrounding soils. This is achieved using a heat pump coupled with embedded heat exchangers. As a result, a multiphysics problem is introduced - heat ...

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using electrodes at the surface. This paper presents a new method for measuring the volume of such an embedded object ...

Integration of the DeProF Model for Two-Phase Flow in P.M. into the Subsurface Flow Module

M. S. Valavanides [1], E. D. Skouras [2], A. N. Kalarakis [3], V. N. Burganos [2],
[1] TEI Athens, Athens, Greece
[2] FORTH/ICE-HT, Patras, Greece
[3] TEI of Western Greece, Patras, Greece

Relative permeability maps for steady-state two-phase flow in porous media, delivered by implementing the DeProF model [1] algorithm, were integrated within COMSOL Multiphysics® software [2] to resolve field-scale flows in porous media. The mechanistic model DeProF [1], predicts the relative permeability of oil and water in terms of the capillary number, Ca, the oil/water flowrate ratio, r, ...

Mechanical Strength Simulation of Concrete Samples Using COMSOL Multiphysics® Software with 3D Mesh Generated by Industrial Tomography System - new

W. C. Godoi[1], D. A. Ussuna[2], S. J. Ribeiro[2], K. de-Geus[3], V. Swinka-Filho[2], F. C. de-Andrade[3], K. F. Portella[2], B. L. Medeiros[2], R. C. R. Santos[4]
[1]Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
[2]Institutos Lactec, Curitiba, PR, Brazil
[3]Copel Geração e Transmissão S.A., Curitiba, PR, Brazil
[4]Universidade Federal do Paraná, Curitiba, PR, Brazil

Analysis of concrete structures is usually carried out by destructive methods. The internal volume flaws directly influence concrete properties. Such inclusions are empty or even resulting from the manufacturing process or degradation by percolation leaching dissolution and chemical reactions between its constituents. Industrial tomography systems (ITS), have proved to be a powerful tool for ...

Lithic Hypar: New Frontiers in Structural Stone Research

D. Malomo [1], V. Varano [2],
[1] DICEA, University of Rome, Italy
[2] LAMS, University of Rome, Italy

The "Lithic Hypar" research is based on the mechanical analysis of an innovative reinforced stone's structure, architecturally designed by Prof. Fallacara, University of Bari (Italy): the headquarters entrance portal of the French company SNBR (Société Nouvelle Batiment Régional) located in Troyes (France), the realization of which is planned for October 2015. The main idea of this lithic ...

Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in Relevance to CO₂ Geological Storage

S. Kim[1], S. A. Hosseini[1], S. D. Hovorka[1]
[1]Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA

CO₂ geological storage can help to provide a “bridge” from a fossil-fuel dependent system to a more diversified energy portfolio. Pressure monitoring for an injection zone (IZ) and an above-zone monitoring interval (AZMI) has been under operation at a field-scale CO₂ injection site, Cranfield, MS. Recorded pressure data in the AZMI revealed a certain amount of increase with no evidence of direct ...

Verification of the Numerical Simulation of Permafrost Using COMSOL Multiphysics® Software - new

E. Dagher[1], G. Su[1], T. S. Nguyen[1]
[1]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

COMSOL® software was used to simulate the conductive heat transfer with phase change in the geological formations encompassed in permafrost surrounding a shallow thaw lake. The purpose of the simulation was to verify the adequacy of COMSOL to model such phenomena by comparing the COMSOL results to those obtained by another FEM model (Ling and Zhang, 2003). The graphical comparison of the ...

Two-phase Flow Calculations in Pore Unit Cells Implementing Mixed FEM/Lattice-Boltzmann Simulators

E. D. Skouras [1][2], A. N. Kalarakis [2], M. S. Valavanides [3], V. N. Burganos [1],
[1] Foundation for Research and Technology, Hellas/Institute of Chemical Engineering Sciences, Patras, Greece
[2] Dept of Mechanical Engineering, TEI of Western Greece, Patras, Greece
[3] Dept of Civil Engineering, Applied Mechanics Laboratory, TEI of Athens, Athens, Greece

In general, macroscopic two-phase flow in porous media is a mixture of connected and disconnected oil flow. The latter is expressed as ganglion dynamics and drop traffic flow, patterns observed experimentally in pore network models [1,2] and real porous media [3,4]. This characteristic was adversely not taken into account in previous modeling approaches. The mechanistic model DeProF [5], ...

The Effect of Different Geometries on the Thermal Mantle Convection

M. Herein, and A. Galsa
Department of Geophysics
Eötvös University
Budapest, Hungary

For the numerical solving of the equations, Comsol has been applied. Simulations have been modeled in 2D Cartesian, in cylindrical coordinate system and in a “mantle-like” cylindrical-shell. Mantle dynamics is controlled by the Rayleigh number (Ra), which is the ratio of the buoyancy and viscous force. The effect of Ra has been studied in the range of 1e4 to 1e7. The significance of the ...

Numerical Study on the Acoustic Field of a Deviated Borehole with 2.5D Method - new

L. Liu[1], W.J. Lin[1], H.L. Zhang[1]
[1]State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

In this paper, we use the PDE interface of COMSOL Multiphysics® software to implement the 2.5D frequency wave-number domain method to investigate the wave propagation in a deviated borehole penetrating a transversely isotropic formation. A convolutional perfectly matched layer is realized to eliminate the reflections from the artificial truncation boundary. With this method, we can obtain the ...