See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2019 Collection
Geophysics and Geomechanicsx

Modeling with COMSOL the Interaction Between Subducting Plates and Mantle Flow

J. Rodríguez-González[1], A.M. Negredo[1], P. Petricca[2], and E. Carminati[2][3]


[1]Departamento de Geofísica y Meteorología, Facultad de CC. Físicas, Universidad Complutense de Madrid, Madrid, Spain
[2]Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Roma, Italy
[3]Istituto Geologia Ambientale e Geoingegneria – CNR, Roma, Italy

Subduction processes have great importance as are related to volcanism and earthquake occurrence. Old and cold plates should subduct steeper than younger ones, but the subduction angle is highly variable and does not always correlate with the age of the plates. Some researchers propose a ... Read More

Hydro-Mechanical Coupling in Saturated and Unsaturated Soils and its Consequences on the Electrical Behaviour

G. Della Vecchia[1], R. Cosentini[1], S. Foti[1], and G. Musso[1]

[1]DISTR, Politecnico di Torino, Torino, Italy

The consequences of hydromechanical coupling on the electrical conductivity of saturated and unsaturated soils are investigated experimentally and numerically. Simulations of the consolidation problem under vertical load for an elastic medium and of the coupled flow of two immiscible ... Read More

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]


[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by ... Read More

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and ... Read More

Radionuclide Transport Through Different Routes Near a Deposition Hole for Spent Nuclear Fuel

V-M.S. Pulkkanen[1]

[1]VTT, Technical Research Centre of Finland, Espoo, Finland

Radionuclide transport modeling is a part of the research concerning geological disposal of spent nuclear fuel. Typically, the transport models near a single deposition hole focus on the reactions of nuclides, while the model geometry and the flow of groundwater are often simplified. In ... Read More

Underground Coal Fire Extinction Model Using Coupled Reactive Heat and Mass Transfer Model in Porous Media

S. Suhendra[1], M. Schmidt[1], and U. Krause[1]
[1]Laboratory II.2: “Flammable Bulk Materials and Dusts, Solid Fuels”, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Green house gases emission associated with natural hazard of underground coal seam fire has been recognized as a worldwide problem leading to global warming threat. Therefore, in this paper a model to study underground coal fire is presented and the results will be devoted to strategic ... Read More

A Numerical Simulation of Adsorption Using Non-Standard Isotherm Equations in COMSOL

A. Ortiz-Tapia, D. Lopez-Falcon, M. Diaz-Viera, S. Lopez-Ramirez, and J. Mendoza-dela-Cruz
Instituto Mexicano del Petroleo, D. F., Mexico

Numerical simulations of the equation of transport were performed using an adsorption isotherm equation, and a simple cubic polynomial. The 1D COMSOL implementation included solutes being injected from one face of a homogeneous, isotropic core (small sample of reservoir rock); where the ... Read More

COMSOL Modeling of a Submarine Geothermal Chimney

M. Suárez [1], and F. Samaniego [2]
[1]Faculty of Sciences, Michoacán University (UMSNH), Morelia, Michoacan, Mexico
[2]Faculty of Engineering Postgrade Studies Division, National University of Mexico (UNAM), Mexico City, Mexico

New geothermal energy sources hold promise for the future. Deep submarine geothermal energy related to hydrothermal vents is emerging in many places along the oceanic spreading centers. Shallow submarine geothermal systems are found near to continental platforms. We present the initial ... Read More

Transport, Growth, Decay and Sorption of Microorganisms and Nutrients through Porous Media: A Simulation with COMSOL

D. Lopez-Falcon, M. Diaz-Viera, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, México D.F., Mexico

Transport of microorganisms through porous media governs many phenomena in bioremediation of environmental pollution problems and microbial enhanced oil recovery. The aim of this work is to investigate the effects of some transport parameters on breakthrough curves as well as on spatial ... Read More

Modelling of Seismoelectric Effects

B. Kröger[1], U. Yaramanci[2], and A. Kemna[1]
[1]1 University of Bonn
[2]GGA Hannover

We present the results of full-waveform time-dependent finite-element modelling of coupled seismoelectromagnetic wave propagation in fluid-saturated porous media. To describe the seismoelectric response of the system a new set of equations is developed which couple the poroelasticity ... Read More