Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Excimer Laser-Annealing of Amorphous Silicon Layers

J. Förster, and H. Vogt
Institute of Electronic Components and Circuits
University Duisburg-Essen
Duisburg, Germany

A one-dimensional model of Excimer Laser-Annealing of amorphous silicon layers which are irradiated with a KrF excimer laser is described. For realisation, the application mode heat transfer in solids is used. The model predicts a melt threshold for the energy density of the laser of 88.5 mJ/cm^2. It also predicts a linear increase of the melt duration with a slope of approximately 625 (ns*cm^2) ...

Long-term Effects of Ground Source Heat Pumps on Underground Temperature

X. Zheng[1]
[1]Wayne State University, Detroit, MI, USA

This study set up a numerical model in COMSOL Multiphysics® and simulated the underground temperature over 100 years. The long-term underground temperature around an energy pile was investigated without considering groundwater movement. Parameters and boundary conditions were examined before the simulation. The temperature changes at different depths and distances were presented. Temperature ...

Analysis of Burning Candle

J.S. Crompton, L.T. Gritter, S.Y. Yushanov, and K.C. Koppenhoefer
AltaSim Technologies LLC, Columbus, OH, USA

Analysis of burning candles is extremely complex; combustion produces a highly non-linear temperature profile through the flame in which local temperatures may exceed 1400 °C. Heat transfer includes radiation, conduction and convection components and the low melting point of the candle wax leads to a phase change that allows mass transport via capillary flow prior to combustion in the flame. ...

Heat Transfer Modeling and Analysis of a Rotary Regenerative Air Pre-heater

R. K. Krishna, R. Ramachandran, and P. Srinivasan
Birla Institute of Technology and Science
Pilani
Rajasthan, India

An attempt has been made to sustain the efficiency of an air pre-heater(APH) in the long run. The APH is modeled using COMSOL Multiphysics in 3D and fed with real life conditions. Upon Heat transfer analysis, the temperature profile was found out and from that, the regions undergoing maximum thermal fatigue stress was identified. The plates of the APH to the periphery are subjected to maximum ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Numerical Investigation of the Convective Heat Transfer Enhancement in Coiled Tubes

L. Cattani[1]
[1]Dipartimento di Ingegneria Industriale, Università degli Studi di Parma, Parma, Italy

The work is focused on the numerical analysis of forced convection in curved tubes investigating the correlation between the heat transfer and friction factor enhancement and the effects of the wall curvature. The analysis was performed by integrating the continuity, momentum and energy equations within COMSOL Multiphysics. The local Nusselt number reaches values higher than the ones expected ...

Modeling Convection during Melting of a Phase Change Material

D. Groulx, and R. Murray
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

COMSOL Multiphysics can be used to model a latent heat energy storage system. A 2D numerical study was performed to simulate melting of a PCM including both conduction and convective heat transfer. The heat transfer in fluids and laminar flow physics interfaces were used. To model natural convection, proper volume force was applied to the PCM. The viscosity was input as a piecewise, continuous ...

A Practical Method to Model Complex Three-Dimensional Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics®

J. Cepeda[1], S. Birla[2], J. Subbiah[2], H. Thippareddi[1]
[1]Department of Food Science & Technology, University of Nebraska, Lincoln, NE, USA
[2]Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA

Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material. However, assembling or defining the individual parts of complex geometries can be difficult. A practical method based on image-based mesh generation, a custom algorithm for labeling materials, and interpolation functions of COMSOL Multiphysics® can be ...

Simulation of PTFE Billet Sintering using COMSOL

A. Roday, and P. Nicosia
Garlock Sealing Technologies
Palmyra, NY

Sintering is an important step in the manufacturing of polytetrafluoroethylene (PTFE) billets. The challenge in heating large billets stems from the inherent low thermal conductivity of PTFE. Existing literature suggests determining maximum heating rate experimentally using recommended guidelines. This paper uses COMSOL to aid in optimizing the temperature profile required for a particular ...

Implementation of a Viscoelastic Material Model to Simulate Relaxation in Glass Transition - new

Z. Zheng[1], R. Zhang[1]
[1]Corning Incorporated, Corning, NY, USA

Introduction: Glass relaxation occurs in a range of temperature during transition from equilibrium to super-cooled liquid. Viscoelastic material model can be applied to simulate glass behavior during the glass transition regime and to predict the glass deformation and stress evolution. Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when ...

First
Previous
1–10 of 658