Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Use of Simulation in the Development of Next-generation Measurement Standards for Radiation Dosimetry

R. E. Tosh[1], H. Chen-Mayer[1]
[1]NIST, Gaithersburg, MD, USA

Calibration of field instruments used in radiation treatment clinics is currently traceable to NIST primary standards via protocols involving static, flat-field radiation beams. By contrast, radiation beams prescribed for treating cancer incorporate temporal and spatial modulation strategies in order to maximize dose to the tumor while sparing healthy tissue. Differences in the detector ...

Computational Modeling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in a Historical Interior - new

Z. Huijbregts[1], A. van Schijndel[1], H. Schellen[1], K. Keune[2], M. Eikema Hommes[3,4]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands
[2]University of Amsterdam, Amsterdam, The Netherlands
[3]Cultural Heritage Agency, Amsterdam, The Netherlands
[4]Delft University of Technology, Delft, The Netherlands

The historic Hofkeshuis in Almelo (The Netherlands) locates a unique work of art: three walls in the rear salon of the private house are covered with an 18th century series of painted wall hangings (Figure 1). The simple and similar pigmentation of the paintings, their original hanging, and the few cleaning interventions make it possible to use the degree of the formation of lead soaps, so ...

Heat Transfer and Working Temperature Field of a Photovoltaic Panel under Realistic Environmental Conditions - new

E. Ruiz-Reina[1], M. Sidrach-de-Cardona[1], M. Piliougine[1]
[1]University of Málaga, Málaga, Spain

The aim of this work is the numerical study, by finite element analysis using COMSOL Multiphysics®, of the heat transfer and working temperature field of a photovoltaic panel under realistic wind and irradiation conditions. It is well-known that a great portion of the solar radiation absorbed by a photovoltaic module (typically 85% of the incident radiation) is not converted into electrical ...

Optimization of Architectured Structures in Building for Harness, Storage, and Release of Energy - new

C. Thoumyre[1], P. Lhuissier[1], L. Salvo[1], G. Bienvenu[2], M. Kermarrec[2]
[1]University Grenoble Alpes, SIMaP, Grenoble, France
[2]Hevatech, Ville-la-Grand, France

The problem of storage, and release of thermal energy is an important challenge in various industrial fields. Several systems for thermal energy storage exist like phase change materials (PCM) and thermochemical storage [1]. The first system usually addresses short term storage (day duration) while thermochemical storage are very interesting for longer duration (seasonal storage). However, ...

Modeling the Internal Pressure Distribution of a Fuel Cell

P.A. Koski[1] and M.S. Mikkola[1]
[1]Department of Applied Physics, Helsinki University of Technology, Espoo, Finland

A 3D FEM (Finite Element Method) model for predicting the internal pressure distribution of a fuel cell stack is presented. The model includes contact pair boundary conditions between the most critical components, thermal expansion and Young's moduli as a function of temperature. The model is used to investigate the changes in pressure distribution inside a PEM fuel cell at realistic ...

Modeling of Shrinkage Behavior in Cement Paste Using Thermal-structural Interaction

T. Chen[1], and P.G. Ifju[1]
[1]University of Florida, Gainesville, Florida, USA

This paper describes using thermal structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain material propertiesfrom the complex geometry used in the tests. The finite element model is created in COMSOL ...

Long Term Performance Of Borehole Heat Exchanger Fields With Groundwater Movement

S. Lazzari, A. Priarone, and E. Zanchini
DIENCA, University of Bologna, Bologna, Italy

A numerical investigation of the long-term performance of double U-tube borehole heat exchanger (BHE) fields, in the case of non-negligible effects of groundwater movement, is performed by means of COMSOL Multiphysics. Two time periodic heat loads, with a period of one year, are studied: Q1, with a partial compensation between winter heating (principal load) and summer cooling; Q2, with no ...

Numerical Investigation of the Convective Heat Transfer Enhancement in Coiled Tubes

L. Cattani[1]
[1]Dipartimento di Ingegneria Industriale, Università degli Studi di Parma, Parma, Italy

The work is focused on the numerical analysis of forced convection in curved tubes investigating the correlation between the heat transfer and friction factor enhancement and the effects of the wall curvature. The analysis was performed by integrating the continuity, momentum and energy equations within COMSOL Multiphysics. The local Nusselt number reaches values higher than the ones expected ...

Electrical and Thermal Analysis of an OLED Module

J. Kundrata[1], A. Baric[1]
[1]Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

This paper presents the electrical and thermal analysis of an OLED module. The OLED module consists of the OLED tile and the DC-DC converter incorporated in its backplane. The DC-DC converter is realized as an integrated circuit and its inductor is embedded in the the backplane. The DC-DC converter is highly efficient, but a fraction of the electrical power is dissipated in the integrated ...

Simulation of Helmholtz Resonators for Optical Gas Sensing: Comparison Between Pressure Acoustics and Thermoacoustics - new

B. Parvitte[1], C. Risser[1], R. Vallon[1], V. Zéninari[1]
[1]Université de Reims, Reims, France

Among optical gas sensing methods, photoacoustic (PA) spectroscopy combined with a laser source has proven to be a very robust and sensitive method for trace gas detection. COMSOL Multiphysics® software was used to calculate the frequency response of differential Helmholtz resonator cells in order to optimize the detection limit of PA sensors. Two different kind of simulation were performed: ...