Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using COMSOL Multiphysics to Model Crust Development at the Surface of Whole Beef Meat Subjected to Hot Air Jet

J. Sicard [1], S. Portanguen [1], C. Chevarin [1], A. Kondjoyan [1]
[1] INRA Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, FRANCE

Crust which develops at the surface of meat leads to reactions which affect food color, flavor and safety. Whole pieces of meat are only contaminated by microorganisms at their surface. Thus intense thermal treatment can inactivate pathogenic bacteria; however the associated high temperatures also lead to the formation of carcinogenic compounds. An experimental study of crust development at ...

Coupled Numerical Modeling and Thermodynamic Approach for SiC Growth Process

J. M. Dedulle [1], K. Ariyawong [1], D. Chaussende [2]
[1] Univ. Grenoble Alpes, Grenoble, France
[2] CNRS, Grenoble, France

Silicon carbide (SiC) single crystals are industrially produced by the physical vapor transport technique. Apart from the geometry of the growth setup, there are two main process parameters that can be controlled: temperature and pressure. To support the development of the process, numerical simulation has imposed as the only tool able to describe the process itself, providing a good evaluation ...

Toward Energy Zero Building: A COMSOL Multiphysics® Model of Building and its HVAC System - new

F. Bruno[1]
[1]ENERSPACE Srl, Genoa, Italy

A model built with COMSOL Multiphysics® to exploit meteorological forecasts and instant outdoor meteorological data (temperature, solar radiation, moisture, wind speed and direcition, etc.) together with indoor ambient data (air temperature, radiant temperature of enclosures, etc), building parameters (mass, orientation, surface, structural composition, etc.) and historical consumption of ...

Simulation of Helmholtz Resonators for Optical Gas Sensing: Comparison Between Pressure Acoustics and Thermoacoustics - new

B. Parvitte[1], C. Risser[1], R. Vallon[1], V. Zéninari[1]
[1]Université de Reims, Reims, France

Among optical gas sensing methods, photoacoustic (PA) spectroscopy combined with a laser source has proven to be a very robust and sensitive method for trace gas detection. COMSOL Multiphysics® software was used to calculate the frequency response of differential Helmholtz resonator cells in order to optimize the detection limit of PA sensors. Two different kind of simulation were performed: ...

Laser Welding of a Titanium Feed Through

H. Viatge
SORIN Group, France

In all implantable medical devices, one main challenge is to assure no water penetrates in the electronic part of the system. To be able to transmit the electronic information from the inside of the device to the lead without any water infiltration, we used a complex part called feed through. This piece is made of four different materials: titanium, alumina, gold and platinum. It is ...

Solid Target Cooling for High Power Neutrino Super Beam

B. Lepers, and C. Bobeth
IPHC, CNRS, Strasbourg, France

The feasibility of water cooling is investigated for a solid target which is integrated as the inner conductor in a magnetic horn for secondary particle focusing (pi; K) as used in conventional neutrino beam accelerator experiment. A simple axi-symmetric thermal model calculated in COMSOL is used to obtain the temperature distribution inside the target for different values of h; power beam and ...

Thermal Model for Single Discharge EDM Process Using COMSOL Multiphysics

K. Gajjar[1], U. Maradia[2], K. Wegener[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharshtra, India
[2]Institute for Process Tools and Manufacturing (IWF), Zurich, Switzerland

Electrical Discharge Machining (EDM) is a non-conventional process used for machining electrically conducting materials. In die sink-EDM, sparks are generated between tool and workpiece resulting in heating of both electrode surfaces and creating a melt pool of metal which leads to generation of new surfaces on cooling. Physical processes involved in electric discharge and material removal are ...

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow ...

Multiphysics Study into Compression Rings, Coated Against Uncoated - new

M. Dickinson[1,2], N. Renevier [1], J. Calderbank[2,3]
[1]The Jost Institute, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[2]Racing to Research Team, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[3]School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK

Internal combustion engine components have been a main research interest over many decades. The structural mechanics and dynamics of the piston rings has been a large focus of work in order to gain a greater understanding of the how the piston ring dynamics affect the piston ring. Piston rings are often coated to reduce the level of wear on the ring as they will suffer substantial levels of ...

Heat Transfer and Working Temperature Field of a Photovoltaic Panel under Realistic Environmental Conditions - new

E. Ruiz-Reina[1], M. Sidrach-de-Cardona[1], M. Piliougine[1]
[1]University of Málaga, Málaga, Spain

The aim of this work is the numerical study, by finite element analysis using COMSOL Multiphysics®, of the heat transfer and working temperature field of a photovoltaic panel under realistic wind and irradiation conditions. It is well-known that a great portion of the solar radiation absorbed by a photovoltaic module (typically 85% of the incident radiation) is not converted into electrical ...