Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow ...

Predicting the Transformation of a Liquid Food Product within a Tubular Heat Exchanger

A. Plana-Fattori [1], E. Auger [1], C. Doursat [1], D. Flick [1]
[1] AgroParisTech, Paris, France

Continuous heat treatment is employed in food industry as a key step in the production of selected products, like dairy desserts. The evolution of an aqueous suspension of starch granules along an existing heat exchanger is here studied by 3D modeling of fluid flow, heat transfer and transformation. 3D modeling puts in evidence the role played by the curved tubes (bends) situated between ...

Thermal Design of Lithium Sulfur Batteries

R. Purkayastha [1], S. Schleuter [1], G. Minton [1], S. Walus [1], M. Wild [1],
[1] Oxis Energy Ltd, E1 Culham Science Centre, Abingdon, United Kingdom

OXIS Energy Ltd is a pioneer in the research and development of Lithium Sulfur batteries. Scaling up from R&D level coin cells to pouch cells for automotive use, engineering design and thermal management start to become critical. In this study, heat flow at various levels of the cell is investigated. We analyzed different heat flow scenarios of the cell, and found that standard pack arrangements ...

Surface to Surface Radiation Benchmarks

J. v. Schijndel [1], R. v. Eck [1], M. Klep [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

The paper presents a student guide on how to implement surface to surface radiation within COMSOL Multiphysics® software for case studies found within the built environment. We included four benchmarks: (1) Radiation in a triangular cavity with infinite length; (2) Radiation between two infinitely long rectangular plates; (3) Radiation in a three dimensional rectangular enclosure; (4) Radiation ...

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...

Computer-aided Design of the Heating Section of a Continuous Kheer (Rice Pudding)-making Machine

S. Kadam[1], T. Gulati[2], A. Datta[1]
[1]Indian Institute of Technology, Kharagpur, India
[2]Cornell University, Ithaca, NY, USA

Kheer is a popular Indian dairy dessert prepared from concentrating milk with simultaneous cooking of rice grains. Conventional methods of preparing kheer have limited its mechanized production. Therefore, a conceptual design of continuous kheer-making machine has been prepared which among other components consists of a heating section for cooking kheer. The present study investigates the CFD ...

Passive Thermal Control for Window Insulation - new

E. Konroyd-Bolden[1], Dr. Z. Liao[1]
[1]Department of Architectural Science, Ryerson University, Toronto, ON, Canada

A requirement of the building envelope is to act as environmental separator. Energy is one component that we sometimes wish to control. How can this yield passive benefits such as solar heating? This research focuses on control of thermal radiation energy, and the role windows play as transfer medium between indoor and outdoor environments. A novel concept for passively controlling solar ...

Study of Energy Transfer Mechanism for a Synchrotron X-ray Gas Absorber with COMSOL Multiphysics

A. Martín Ortega [1], Y. Dabin [1], T. Minea [2], A. Lacoste [3]
[1] ESRF, Grenoble, France
[2] LPGP, Université Paris-Sud XI, Orsay, France
[3] LPSC, Université Joseph Fourier, Grenoble, France

The high power of X-ray beam delivered by synchrotrons and free electron lasers, up to 240 W/mm2, requires heat load management solutions to obtain the best performance from the optical elements which will shape the beam for its use in the experimental stations [1]. One solution is the use of gas attenuators: a tube filled with an inert gas, usually Argon or Krypton, is placed between X-ray ...

Numerical Analysis of Copper Heat Sink with Different Micro Pin Fins

S. V. Jadhav [1], P. M. Pawar [1],
[1] SVERI's College of Engineering, Pandharpur, Maharashtra, India

Micro heat sinks can be widely used for cooling in modern microelectronic high heat flux components where the amount of heat generated sometimes exceeds the limit which the system can withstand. Microstructures when introduced into the channels of heat sinks in form of micro fins enhance the heat transfer performance of the heat sinks further. Copper heat sinks with different types of micro fins ...

Hygrothermal Modeling: A Numerical and Experimental Study on Drying

M. Bianchi Janetti [1], F. Ochs [1], L. P. M. Colombo [2]
[1] University of Innsbruck, Unit for Energy Efficient Buildings, Innsbruck, Austria
[2] Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, 20156 Milan, Italy

A model for coupled heat and mass transfer in porous, capillary-active materials is validated against experimental data obtained by drying calcium silicate specimens. The accuracy of the numerical solution is qualitatively investigated by considering mass conservation for a set of different cases, varying boundary conditions and numerical setup. It is shown that the model is able to reproduce ...