Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermo Mechanical Analysis of Divertor Test Mock-up using COMSOL Multiphysics

Y. Patil[1], D. Krishnan[1], S. S. Khirwadkar[1]
[1]Institute for plasma research, Bhat, Gandhinagar, Gujarat, India

Divertor is act as an exhaust for the nuclear fusion reactor. Main function of a divertor is to remove the heat flux from the plasma. Plasma facing components of the divertor are made up of Carbon (Graphite/CFC) and tungsten like materials[1]. Hence these materials are exposed to the transient heat loads up to 10MW/m^2. Thermo mechanical behavior of Graphite test mock-up under the transient heat ...

Multiphysics Process Simulation of the Electromagnetic-Supported High Power Laser Beam Welding of Austenitic Stainless Steel

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The application of an oscillating magnetic field on the high-power full-penetration laser beam welding process of a 20 mm thick stainless steel plate was numerically and experimentally investigated. In the simulations, three-dimensional heat transfer and fluid dynamics as well as electromagnetics were solved taking into account the most important physical effects of the process, namely the ...

Multiphysics Study into Compression Rings, Coated Against Uncoated - new

M. Dickinson[1,2], N. Renevier [1], J. Calderbank[2,3]
[1]The Jost Institute, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[2]Racing to Research Team, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[3]School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK

Internal combustion engine components have been a main research interest over many decades. The structural mechanics and dynamics of the piston rings has been a large focus of work in order to gain a greater understanding of the how the piston ring dynamics affect the piston ring. Piston rings are often coated to reduce the level of wear on the ring as they will suffer substantial levels of ...

A Model of Heat Transfer in Metal Foaming

Bruno Chinè [1], Valerio Mussi [2], Michele Monno [3], Andrea Rossi [2],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[3] Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy

Metal foams are interesting materials with many potential applications. Foamed metals or alloys include gas voids in the material structure and therefore the density is introduced as a new variable, with the real possibility to modify ad hoc their physical properties. In the indirect foaming process carried out in a furnace, simultaneous mass, momentum and energy transfer between three phases, ...

Model of Moisture Dynamics in Road Systems of Sweden

H. Rasul [1], M. Wu [1], B. Olofsson [1],
[1] KTH, Stockholm, Sweden

In high latitude regions, the moisture dynamics in road systems is more complicated due to freezing/thawing. A better understanding of moisture dynamics in road systems in cold regions is essential for a stable road structure design and also for a sustainable road hydrologic environment. An observation system was installed in a highway in Sweden to detect water, heat and solute dynamics during ...


李勇 [1], 方晖 [2],
[1] 晋中学院,太原,中国
[2] 深圳大学,深圳,中国

定量分析生物颗粒形态的变化可以为疾病诊断提供依据。例如血红细胞形态的变化常常会伴随有相应的血液疾病[1],细胞的癌变常常伴随有细胞核形态的变化[2]等等。无标记的光学显微成像技术已经可以对生物颗粒的尺度和形状进行直接测量。光声显微成像技术(PAM)利用生物颗粒固有的吸光本领,已经可以对单个生物颗粒(如细胞和细胞器)进行成像[3]。 最近,光声流式仪(the photoacoustic flow-cytometry)已经实现了对单个生物颗粒进行连续检测[4]。然而,为了在大量的生物颗粒中快速检测生物颗粒的形貌,最好的方法是并非对其进行直接成像,而是采用高频光声显微技术[5],它的分辨率来源于实际测量与光声功率谱的分析。 光声功率谱分析需要通过计算建模来获取。我们使用 COMSOL Multiphysics® 有限元分析软件的声学模块用来建模 MFC7 细胞核的光声功率谱 ...

Application of COMSOL Multiphysics in the Study of Heat Transfer in Solids: Comparison with Measurements Obtained by Means of Infrared Photothermal Radiometry

V.M. Suárez Quezada[1], J.H. Wong[1], J.A. Calderón Arenas[1], E. Marín Moares[1], José Bruno Rojas Trigos[1], Antonio Gustavo Juarez Gracia[1], Jonathan F Guarachi solano[1]
[1]Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Legaria del Instituto Politécnico Nacional, Mexico, Distrito Federal, Mexico

We report the use of Heat transfer Module of COMSOL Multiphysics and a technique based on Infrared Photothermal Radiometry to study the heat transfer of a homogeneous and isotropic solid material excited by a periodic laser beam on the front side of the sample, and one infrared detector on the rear side in order to obtain the evolution of difference of temperature with the time exposure. We use ...

Heat Pipe Assisted Thermal Management of an HT PEMFC Stack

E. Firat[1], G. Bandlamudi[1], M. Crisogianni[1], P. Beckhaus[1], A. Heinzel[1]
[1]Centre for Fuel Cell Technology (ZBT), Duisburg,NRW, Germany

Heat management is crucial for the satisfactory operation of HT-PEM (High temperature polymer-electrolyte-membrane) fuel cells. Current work investigates the use of heat pipes in a HT PEMFC stack consisting of 24 cells, each with an active area of 300 cm^2. Heat pipes are known to be thermal superconductors operating on the principles of high convective heat transfer and phase transition. ...

Heat Transfer Modelling of Single High Temperature Polymer Electrolyte Fuel Cell (HT PEFC) Using COMSOL Multiphysics®

V. Venkataraman[1]
[1]Centre for Hydrogen & Fuel Cell Research, University of Birmingham, United Kingdom

In this paper a 3D geometry of a single HT PEFC with all the components (membrane, cathode, anode & bipolar plate with flow field) was modelled for heat transfer. The source of heat within the fuel cell is the internal heat generated from electrochemical reactions. Heat source terms used in the model are: Joule Heat - Occurs in membrane and modelled as Volumetric heat source Irreversible ...

Simulation of Spiral-Tube Heat Exchangers in COMSOL Multiphysics® Software

K. O. Lund [1], S. M. Lord [2],
[1] Kurt Lund Consulting (COMSOL Certified Consultant), Del Mar, CA, USA
[2] SML Associates, Encinitas, CA, USA

A frequently occurring geometry for heat exchangers is that of a long tube wound into a helix or spiral around a core volume. There is to be heat exchange between the tube and the gases (or solids) in the core. However, the length scales of these two parts of the geometry are very different, thus complicating the interface between the tube and the core processes. Usually, the tube is too ...