Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

热管与相变材料相结合的锂电池热管理研究

江智元 [1], 王琼 [1],
[1] 西安交通大学,西安,中国

引言 采用相变材料的汽车电池热管理技术已经被广泛研究,利用相变材料的相变潜热对电池进行温控,能有效降低电池高倍率工作条件下的电池温升,提高温度均匀性[1,2]。热管作为一种高导热,紧凑型,形式灵活的换热器件,也被用于电池热管理之中[3,4]。本文针对相变材料与热管相结合的换热结构,对该结构的换热特点,以及对影响该结构换热效果的相关参数进行了数值模拟研究。 COMSOL Multiphysics® 的使用 利用 COMSOL Multiphysics 中的电化学模块和传热模块,建立了二维的电池-热管-相变材料“三明治”结构(图1)。电池部分采用了热-电化学耦合的电池产热模型,热管采用了三层结构的烧结热管模型。 结果 对于耦合换热模块而言,热管冷端的散热情况和相变材料的厚度对模块的换热效果影响较大。如图2所示,电池的温度随着热管冷端换热系数的提高而下降,温度下降并非线性 ...

Multiphysics Modeling of Heat Transfer During Fiber Drawing

K. Koppenhoefer [1], J. Thomas [1], L. Gritter [1], J. S. Crompton [1], T. Tower [2],
[1] AltaSim Technologies, Columbus, OH, USA
[2] Kimberly-Clark, Inc., Neenah, WI, USA

The process of cold drawing a fiber over rollers is analyzed in this work to predict the temperature rise due to the heat generated during plastic deformation of the fiber. Experimental measurements on prototypes indicated an unacceptable temperature rise of greater than 100 F requiring identification of process modifications to reduce the temperature rise to an acceptable level. A ...

Improvement of a Steady State Method of Thermal Interface Material Characterization by Use of a Three Dimensional FEA Simulation in COMSOL

B. Sponagle[1], D. Groulx[1]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

An FEA model of a steady state thermal interface material characterization apparatus was created in COMSOL Multiphysics 4.2a. This model was then fitted using three convection heat loss coefficients and the conductance of the TIM layer to a set of experimental measurements made using a steady state apparatus. It was shown that the model successfully matched the measured temperature values and ...

Heat and Mass Transfer Modeling During Freezing of Foodstuffs

O. Rouaud[1], T. Pham[2]
[1]LUNAM Université, ONIRIS, CNRS, GEPEA, UMR, Nantes, France
[2]University of New South Wales, Sydney, Australia

A mathematical model is developed to determine the weight loss and the freezing rate during the freezing of unwrapped foodstuffs. The model allows comparing two freezing processes; the first uses nitrogen gas at -80°C and the second uses cold air. The model includes thermophysical properties that are temperature dependent to take into account the ice formation. The time step has to be chosen ...

Numerical Simulation of Chamber Design for Pulsed Electric Fields Processing of Wet Olive Pomace - new

N. Varga[1], I. Perales[2], A. Portugal[2]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary
[2]ATEKNEA Solutions Catalonia, Barcelona, Spain

The application of pulsed electric fields (PEF) is well known in the food industry as an advanced technology for mass transfer improvement. A new potential adaptation area of PEF could be extracting a valuable antioxidant called polyphenol from wet olive pomace (WOP) which is a by-product of olive oil production. The modelling includes the PEF effects on the WOP which is flowing through a ...

Numerical Study of the Effect of Fins on the Natural Convection Driven Melting of Phase Change Material

C. Liu, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

Natural convection has to be accounted and simulated for in order to properly describe the physics encounter in the phase change process. A simplified two-dimensional model was created in COMSOL 4.1. Natural convection was accounted for by adding a volume force and using the Boussinesq approach. The heat transfer and laminar flow physics were used. Results showed that natural convection ...

Use of COMSOL as a Tool in the Design of an Inclined Multiple Borehole Heat Exchanger

E. Johansson[1], J. Acuña[1], B. Palm[1]
[1]Royal Institute of Technology KTH, Stockholm, Sweden

A field of connected boreholes can be used both for cooling, heating and storage purposes. The boreholes transfer heat to or from the ground, which over time changes the temperature in the ground. It is important that the borehole field is properly sized and evaluated before the construction. This study presents results from borehole field evaluations of inclined boreholes used for cooling ...

Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices

L. Graber[1], N.G. Suttell[1], D. Shah[1], D.G. Crook[1], C.H. Kim[1], J. Ordonez[1], S. Pamidi[1]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA

Heat sinks for cryogenic applications using helium gas as the coolant are not readily available. They require to be designed specifically for the intended application. A finite element model was developed to study the feasibility and optimize the design. The FEM computing package COMSOL Multiphysics allowed to couple fluid flow and heat transfer as needed. An experiment was designed to validate ...

Uncertainty Assessment and Sensitivity Analysis of Heat Generation within a Lithium-Ion Battery

G. Liebig [1], G. Gupta [1], K. Derendorf [1], C. Agert [1],
[1] DLR Institute of Networked Energy Systems, Oldenburg, Germany

Dedicated work in modeling, simulation and design optimization of Lithium-ion Battery (LIBs) was done in the past decades, and still, the most widely used one for electrochemical processes is the Newman model. [1] The underlying parameters are treated deterministically, but the impact of uncertainty due to experimental accuracy limitations and cell-to-cell variations have an undeniable impact on ...

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing ...