Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity - new

R. C. Thiagarajan[1],
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Materials with an order variable in thermal conductivity as a function of temperature are desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications. Thermal Conductivity is an inherent material property. Engineering the fundamental thermal conductivity needs manipulation at thermal photon level for conventional materials. Engineering thermal ...

Predicting the Transformation of a Liquid Food Product within a Tubular Heat Exchanger

A. Plana-Fattori [1], E. Auger [1], C. Doursat [1], D. Flick [1]
[1] AgroParisTech, Paris, France

Continuous heat treatment is employed in food industry as a key step in the production of selected products, like dairy desserts. The evolution of an aqueous suspension of starch granules along an existing heat exchanger is here studied by 3D modeling of fluid flow, heat transfer and transformation. 3D modeling puts in evidence the role played by the curved tubes (bends) situated between ...

Numerical Analysis of Copper Heat Sink with Different Micro Pin Fins

S. V. Jadhav [1], P. M. Pawar [1],
[1] SVERI's College of Engineering, Pandharpur, Maharashtra, India

Micro heat sinks can be widely used for cooling in modern microelectronic high heat flux components where the amount of heat generated sometimes exceeds the limit which the system can withstand. Microstructures when introduced into the channels of heat sinks in form of micro fins enhance the heat transfer performance of the heat sinks further. Copper heat sinks with different types of micro fins ...

Hygrothermal Modeling: A Numerical and Experimental Study on Drying

M. Bianchi Janetti [1], F. Ochs [1], L. P. M. Colombo [2]
[1] University of Innsbruck, Unit for Energy Efficient Buildings, Innsbruck, Austria
[2] Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, 20156 Milan, Italy

A model for coupled heat and mass transfer in porous, capillary-active materials is validated against experimental data obtained by drying calcium silicate specimens. The accuracy of the numerical solution is qualitatively investigated by considering mass conservation for a set of different cases, varying boundary conditions and numerical setup. It is shown that the model is able to reproduce ...

Multiphysics Modeling of Heat Transfer During Fiber Drawing

K. Koppenhoefer [1], J. Thomas [1], L. Gritter [1], J. S. Crompton [1], T. Tower [2],
[1] AltaSim Technologies, Columbus, OH, USA
[2] Kimberly-Clark, Inc., Neenah, WI, USA

The process of cold drawing a fiber over rollers is analyzed in this work to predict the temperature rise due to the heat generated during plastic deformation of the fiber. Experimental measurements on prototypes indicated an unacceptable temperature rise of greater than 100 F requiring identification of process modifications to reduce the temperature rise to an acceptable level. A ...

A Multiphysics Approach to Fundamental Conjugate Drying by Forced Convection

M. de Bonis, and G. Ruocco
DITEC, Universitµa degli studi della Basilicata, Campus Macchia Romana, Potenza, Italy

Heat and mass transfer involved in drying is studied by using COMSOL 3.4. The effect of air temperature on the performance of the drying process applied to fresh food slices is scrutinized. COMSOL’s flexible formulation is exploited by using special drying kinetics for the substrate, and by including a treatment of the dependence of the properties upon the residual moisture content. The model ...

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

Modeling of Coupled Mass and Heat Transfer and Expansion During Baking of Bread in a Mould

V. Nicolas[1], C. Doursat[2], D. Grenier[1], T. Lucas[1], D. Flick[2]
[1]Institut de recherche en sciences et technologies pour l'environnement et l'agriculture, Rennes, France
[2]AgroParisTech, UMR1145 Ingénierie Procédés Aliments, Massy, France

Bread is a food product which various complex physico-chemical phenomena occur during the cooking process. Thus, phenomena of heat and mass transfer are coupled to the deformation. In addition, bread is a multiphase product (solid, liquid and vapor) and composed of various components (dry matter, water, air and carbon dioxide). A 2D model is developed with COMSOL Multiphysics® 4.3b witch ...

Heat and Moisture in Wooden Bearings of Monuments

H. L. Schellen [1], M. Spierenburg [2], A. W. M. van Schijndel [1],
[1] Eindhoven University of Technology, Eindhoven, The Netherlands
[2] 2DPA Cauberg-Huygen, Amsterdam, The Netherlands

Nowadays, thermal insulation is applied to most buildings. However, this proves to be a challenge for most monumental buildings. When insulation needs to be applied at the interior side of a building, thermal bridges are inevitable. Wooden beam ends beared in an external wall are an example of such a (hygro-)thermal bridge. Adding interior insulation introduces a risk at mould growth and can ...

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...