Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound - new

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the phonon ...

A Flow and Transport Model for Low-Temperature Gaseous Nitrocarburizing of Stainless Steels

J. Feng [1], M. Wettlaufer [1],
[1] Centre of Materials Engineering, Heilbronn University, Heilbronn, Germany

An integrated numeric, thermodynamic, and experimental analysis work was conducted to find out the proper flow and transport parameters of combined chemical species for low-temperature gaseous nitrocarburizing of stainless steels in an industrial furnace built for thermochemical treatments. Such parameters are responsible for a steady thermochemical atmosphere essential for the anti-passivation ...

3D Unsteady CFD with Heat and Mass Transfer Simulations of Solar Adsorption Cooling System for Buildings

W. Yaici [1], E. Entchev [1], J. Ranisau [1],
[1] CanmetENERGY Research Centre, Natural Resources Canada, Ottawa, ON, Canada

In recent years, extensive attention has been paid on the application of solar cooling for buildings. Amongst cooling technologies, low-temperature solar-driven adsorption cooling systems are emerging viable alternatives to electricity-driven vapour compression systems. They seem to have a promising market potential. The greatest challenge for their widespread use is the reduced thermal and mass ...

Thermal Simulation of FCBGA Package with Heat Sink

M. R. Naik[1]
[1]Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

In a modern IC design, the capability of predicting the temperature profile is critically important as well as cooling and related thermal problems are the principal challenges. To address these challenges, thermal analysis must be embedded within IC synthesis. This paper presents thermal analysis of the FCBGA chip with a 4mm×4mm×0.3mm silicon die. The silicon die dissipates heat flux of ...

Simulation of Spiral-Tube Heat Exchangers in COMSOL Multiphysics® Software

K. O. Lund [1], S. M. Lord [2],
[1] Kurt Lund Consulting (COMSOL Certified Consultant), Del Mar, CA, USA
[2] SML Associates, Encinitas, CA, USA

A frequently occurring geometry for heat exchangers is that of a long tube wound into a helix or spiral around a core volume. There is to be heat exchange between the tube and the gases (or solids) in the core. However, the length scales of these two parts of the geometry are very different, thus complicating the interface between the tube and the core processes. Usually, the tube is too ...


唐旻 [1], 冯强强 [1], 董一琳 [1]
[1] 上海交通大学,上海,中国

近年来,三维系统级封装技术逐渐成为人们的关注焦点,是下一代集成电路封装设计最有发展潜力的实现方案。然而,热管理是系统级封装技术需解决的关键问题。图1是典型的系统级封装结构,包含堆叠芯片、硅通孔、封装基板、热界面材料以及多层凸点结构。若对该结构的所有细节进行建模,将会消耗巨大的计算资源,导致分析效率非常低下。因此,本论文将封装中的硅通孔层以及凸点层等复杂结构进行等效处理,提取它们在水平和垂直方向上的等效热导率以及等效比热容、等效密度等参数。例如,在建模过程中,采用 COMSOL Multiphysics® 传热模块对硅通孔层的水平方向等效热导率进行提取,边界设置如图2所示,通过仿真得到的热源端温度来推导等效热导率。类似地,垂直方向的等效热导率提取如图3所示。经过上述处理,可将封装中的硅通孔层以及凸点层等复杂结构等效为介质均匀的材料,然后再采用 COMSOL 进行整体封装结构的热仿真 ...

The APP as a Tool, A First Principles Approach

R. W. Pryor[1],
[1] Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The app discussed in this paper is based on a COMSOL Multiphysics® 1D heat transfer model that analyses the heat flow through a double pane window, with a gas chamber between the two panes, as would normally be mounted in the wall of a building, a container or a refrigerated chamber. The double pane window has air on both the inner and outer sides, and a gas of choice between the two panes. The ...

Modeling of Coupled Mass and Heat Transfer and Expansion During Baking of Bread in a Mould

V. Nicolas[1], C. Doursat[2], D. Grenier[1], T. Lucas[1], D. Flick[2]
[1]Institut de recherche en sciences et technologies pour l'environnement et l'agriculture, Rennes, France
[2]AgroParisTech, UMR1145 Ingénierie Procédés Aliments, Massy, France

Bread is a food product which various complex physico-chemical phenomena occur during the cooking process. Thus, phenomena of heat and mass transfer are coupled to the deformation. In addition, bread is a multiphase product (solid, liquid and vapor) and composed of various components (dry matter, water, air and carbon dioxide). A 2D model is developed with COMSOL Multiphysics® 4.3b witch ...

Modeling Melting Profiles in Chocolate Pieces for Optimizing their Sensory Properties

B. Watzke[1], F. Lenfant[1], N. Martin[1]
[1]Nestlé research Centre, Vers-chez-les-Blanc, Switzerland

Chocolate is a pleasurable product largely consumed over the world. It is known that ingredients, process and particle size distribution largely impact the chocolate sensory perceptions. It was hypothesized that a suitable choice of chocolate size and geometry modifies in-mouth melting and aroma release and modulates flavour and oral texture perception. Since in-vivo experiments on chocolate ...

Numerical Simulation of Thermal Runaway in a THz GaAs Photoconductor - new

S. Sarodia[1,2], W. Zhang[2], E. Brown[2]
[1]Centerville High School, Dayton, OH, USA
[2]Wright State University, Dayton, OH, USA

Ultrafast terahertz photoconductor devices, especially photomixers, are usually limited in output power by device failure thought to be caused by excessive temperatures. Therefore, understanding of thermal breakdown is essential to the study of device reliability and failure of photoconductors. We performed a series of simulations to determine the electronic and thermal thresholds responsible ...