Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermomechanical Effects of the Packaging Molding Process on the Chip in Integrated Circuits - new

N. Semmar[1], M. Fournier[1], P. S. Alleaume [2], A. Seigneurin [3], , ,
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France
[2]Collegium Sciences et Techniques, Orléans, France
[3]ST Microelectronics Tours SAS, Tours, France

Usually, in integrated circuits, the chip is brazed on leadframe and then, a polymer resin is molded around to create the packaging. On the first hand, the molding process at high temperatures will induce thermomechanical stress on the chip. As the leadframe, the chip and the braze have all different thermoelastic properties, these stress can be critical for the chip connections. To ...

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...

Simulation of MEMS Based Pressure Sensor for Diagnosing Sleep Disorders

J. Vijitha[1], S. S. Priya[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Sleep apnea is a type of sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. There is a need to diagnose sleep apnea since it leads to fluctuations in the oxygen level that in turn affect the heart rate and blood pressure. In order to detect this disorder, a Micro Electro Mechanical System (MEMS) based piezoelectric pressure sensor ...

Oxidation of Metallic Nanoparticles

A. Auge[1], A. Weddemann[1], F. Wittbracht[1], B. Vogel[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

The oxidation behavior of metallic nanoparticles is investigated in respect to material parameters like Mott potential, defects on the microstructure and oxide volume increase per ionic defect. An emphasis is laid on magnetic nanoparticles where the degree of oxidation can be measured via the reduction of the magnetic moment.

Modeling an electric cell actuator and loudspeaker using COMSOL Multiphysics

W. J. Wu
NTU Nano-Bio MEMS Group
National Taiwan University,

This presentation presented the following: * The building of an FEA model of an electric cell actuator using COMSOL Multiphysics * Validation of this model through the AVID and ESPI measurement systems * The building of an FEA model of an electric loudspeaker using COMSOL Multiphysics * Validation of this model throughan acoustic measurement systems This paper is in Chinese.

Positioning System for Particles in Microfluidic Structures

D. Kappe[1], A. Hütten[1]
[1]University of Bielefeld, Bielefeld, Germany

The possibility to detect and probe molecules in microfluidic devices gives rise to interesting applications. There are different approaches how to detect and probe particles, but a common step, for most methods, is to place the particles on a sensor. This can be done by applying external field gradients, or in this case by utilizing gravitational and hydrodynamic effects. Therefore, the sensor ...

Modeling of Directional Dependence in Nanowire Flow Sensor - new

A. Piyadasa[1,3], P. Gao[1,2,3]
[1]Department of Physics, University of Connecticut, Storrs, CT, USA
[2]Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA
[3]Institute of Materials Sciences, University of Connecticut, Storrs, CT, USA

3D finite element analysis model has been constructed for testing the directional dependence in a novel form of nanowire array gas flow sensor. Single nanowire (p-type single crystal Silicon) model is developed using fluid structure interaction and piezoresistivity components in the MEMS Module for COMSOL Multiphysics® software. Change in resistivity tensor due to induced stress in the nanowire ...

DNA Interactions in Crowded Nanopores - new

K. Misiunas[1], N. Laohakunakorn[1], S. Ghosal[2], O. Otto[1], U. F. Keyser[1]
[1]University of Cambridge, Cambridge, UK
[2]Northwestern University, Evanston, IL, USA

The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a bead held in a laser optical trap to produce a "molecular tug-of-war". We measure this tether force as a function ...

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program architecture is explained and is used to simulate two applications. The first calculates the voltage induced by an ...

Actively Controlled Ionic Current Gating In Nanopores

G. Zhang[1], S. Bearden[1]
[1]Clemson University, Clemson, SC, USA

It is necessary to understand and control nanopore behavior in order to develop biosensors for a variety of applications including DNA sequencing. The fluidics of nanopore devices we fabricated exhibits a range of interesting phenomena, such as enhanced conductance and current rectification. By electrically biasing nanopores, we were able to actively control the nanopore conductance in real time ...