Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Detection of Magnetic Particles by Magnetoresistive Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]
[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we demonstrate the implementation of the micromagnetic equations for the description of ferromagnetic thin films in COMSOL Multiphysics®. We apply our model to magnetoresistive sensors consisting of several soft ferromagnetic layers and their response to magnetic particles. The magnetization dynamic of the particles needs to be described in a similar manner, though due to size ...

Droplet Generation by Means of a Two-Fluid Probe

B.P. Cahill[1], M. Quade[1], G. Gastrock[1], K. Lemke[1], J. Metze[1], and D. Beckmann[1]

[1]Institut für Bioprozess und Analysenmesstechnik e.V., Rosenhof, Heilbad Heiligenstadt, Germany

This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn into the inner tubing. In this way, droplets of cell medium are entrained into the outlet tubing forming a ...

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are used to open the valve.  A device model and a design optimization strategy using COMSOL ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

Simulation of DC Current Sensor

K. Suresh, B.V.M.P.S. Kumar, U.V. Kumar, M. Umapathy, and G. Uma
National Institute of Technology Tiruchirapalli, Tamil Nadu, India

A proximity DC current sensor using of a piezo sensed and actuated cantilever beam with a permanent magnet mounted at its free end is designed and simulated in COMSOL Multiphysics. The change in resonant frequency of cantilever is a measure of the current through the wire. The sensor is found to be linear with good sensitivity.

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Coimbatore
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

Kinetic Investigation of a Mechanism for Generating Microstructures on Polycrystalline Substrates Using an Electroplating Process

T. Soares[1], H. Mozaffari[2], H. Reinecke[1]
[1]Universität Freiburg, Freiburg im Breisgau, BW, Germany
[2]Hochschule Furtwangen, Tuttlingen, BW, Germany

The purpose of this study is to understand the growth mechanism of copper (Cu) films on a Cu-Zn system substrate with a pre-defined pattern. The pattern was defined by conducting a selective etching process on a two-phase polycrystalline substrate. As a result of this process, there were etched regions correspondent to beta-phase crystals and quasi non-etched regions that belong to alpha-phase ...

Empirical Model Dedicated to the Sensitivity Study of Acoustic Hydrogen Gas Sensors Using COMSOL Multiphysics®

A. Ndieguene[1], I. Kerroum[1], F. Domingue[1], A. Reinhardt[2]
[1]Laboratoire des Microsystèmes et de Télécommunications/Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
[2]Laboratoire d’Électronique et des Technologies de l’Information, CEA, LETI Grenoble, France

Due to the increasing demand for hydrogen gas sensors for applications such as automation, transportation, or environmental monitoring, the need for sensitive and reliable sensors with a short response time is increasing. This paper presents an empirical model that studies the sensitivity of acoustic hydrogen gas sensors. A parametric study based on the variation of physical properties of ...

Modeling and Simulation of the Rapid and Automated Measurement of Biofuel Blending in a Microfluidic Device under Pressure Driven Flow using COMSOL Multiphysics®

Sanket Goel[1], Venkateswaran PS[1], Rahul Prajesh[2], Ajay Agarwal[2]
[1]University of Petroleum & Energy Studies, Bidholi, Prem Nagar, Dehradun, India
[2]CSIR - Central Electronics Engineering Research Institute,(CSIR-CEERI) Pilani, India

• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro-fluidic Device. • Design and Fabrication of a polymer Y-shaped Micro-fluidic Device to work as Micro-Viscometer for ...

Sample Preconcentration in Channels with Nonuniform Surface Charge and Thick Electric Double Layers

A. Eden [1], C. McCallum [1], B. Storey [2], C. D. Meinhart [1], S. Pennathur [1],
[1] University of California Santa Barbara, Santa Barbara, CA, USA
[2] Olin College, Needham, MA, USA

We present a novel method for concentrating and focusing small analytes by taking advantage of the nonuniform ion distributions produced by thick electric double layers (EDLs) in nanochannels with heterogeneous surface charge. Specifically, we apply a voltage bias to a gate electrode embedded within the channel wall, tuning the surface charge in a region of the channel and subsequently altering ...