See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
MEMS and Nanotechnologyx

3D Simulation of an Acceleration Sensor with Self-sufficient Energy Supply

L. Weber [1], L. Fromme [1], D. Zielke [2],
[1] University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany
[2] University of Applied Sciences Bielefeld, Institute BIFAM, Bielefeld, Germany

Piezo buzzers, made of piezoelectric material glued on a brass plate, are usually used as signaler, but the buzzer can also be used to convert mechanical into electrical energy. If acceleration influences the buzzer, the structure is bent by its mass and a voltage can be measured between ... Read More

Designing Piezoelectric Interdigitated Microactuators using COMSOL

O. Myers [1], M. Anjanappa [2], and C. Freidhoff [3]

[1] Mississippi State University, Mississippi State, MS, USA
[2] University of Maryland Baltimore County, Baltimore, MD, USA
[3] Northrop Grumman Corporation, Electronics Systems Sector, Baltimore, MD, USA

This paper presents a methodology towards designing, analyzing and optimizing piezoelectric interdigitated microactuators using COMSOL Multiphysics. The models used in this study were based on a circularly interdigitated design that takes advantage of primarily the d33 electromechanical ... Read More

Modelling of SiC Chemical Vapour Infiltration Process Assisted by Microwave Heating

G. Maizza[1] and M. Longhin[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor mechanical strength and toughness of SiC/SiC composites manufactured by CVI (Chemical Vapour Infiltration) process. This work presents a micro/macro Microwaveassisted Chemical Vapour ... Read More

Air Convection on a Micro Hotplate Gas Sensor

S. Gidon[1], M. Brun[1], S. Nicoletti[1], P. Barritault[1]
[1]Commissariat Energie Atomique, LETI, Minatec Campus, Grenoble, France

Monitoring of indoor CO2 concentration is of particular interest to detect room occupancy in order to optimize power consumptions of building. One approach to monitor the indoor CO2 concentration is to use optical detection using specific absorption lines of CO2 molecules in the infrared ... Read More

RFID-Enabled Temperature Sensor

I.M. Abdel-Motaleb[1], K. Allen [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

The design of a RFID-enabled temperature sensor is described in this paper. In this sensor, a change in temperature causes structural beams to bend, which results in a proportional displacement of the plates of the capacitor. Plates\' displacement results, in turn, in changing the value ... Read More

Modeling, Simulation, and Optimization of Piezoelectric Bimorph Transducer for Broadband Vibration Energy Harvesting in Multi-Beam and Trapezoidal Approach

N. Chen [1], V. Bedekar [1],
[1] Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, TN, USA

The objective of the research is to design a broadband energy harvester device through the multi-beam approach and non-linear trapezoidal geometry approach. The performance of two piezoelectric PZT-PZN polycrystalline ceramic composition samples are simulated in COMSOL Multiphysics®, and ... Read More

Analysis & Design Optimization of Laterally Driven PolySilicon Electro-thermal Microgripper for Micro-objects Manipulation

T. Pahwa[1], S. Gupta[1], V. Bansal[1], R. Narwal[1], B. Prasad[1], D. Kumar[1]
[1]Electronic Science Department, Kurukshetra University, Kurukshetra, India

Micro-grippers find applications in micro-robotics, microsurgery, micro-fluidics, micro-relays, assembling and miniature medical instrumentation. Actuation principle involved may be electrothermal, electrostatic, piezoelectric, shape memory and electromagnetic. It has been found that ... Read More

Design and Implementation of MEMS based Blood Viscometer for INR Measurement

J. G. Immanuel[1], K. Poojitha[1], B. Viknesshwar[1], A. Gupta[1]
[1]PSG College of Technology, Peelamedu, Coimbatore, Tamil Nadu, India

The paper brings out the designing and implementation of blood viscosity monitoring device that gives us the INR to measure the effectiveness of anti coagulant medications .When a blood vessel is damaged, clotting cascade begins that results in blood clot. This process is affected by ... Read More

Design for Reliability and Robustness through Probabilistic Methods in COMSOL Multiphysics with OptiY

T.-Q. Pham[1], H. Neubert[2], and A. Kamusella[2]
[1]OptiY e.K., Aschaffenburg, Germany
[2]Institute of Electro-Mechanical and Electronic Design, TU Dresden, Germany

One challenge in designing micro-electromechanical systems (MEMS) is considering the variability of design parameters caused by manufacturing tolerances and material properties. The function of MEMSs is significantly influenced by this variability, which can be represented in terms of ... Read More

A Modular Platform for Cell Characterization, Handling, and Sorting by Dielectrophoresis

S. Burgarella[1], B. Dell’Anna[2], V. Perna[1], G. Zarola[2], and S. Merlo[2]

[1]STMicroelectronics, Agrate Brianza, MI, Italy
[2]Dipartimento di Elettronica, Università degli Studi di Pavia, Pavia, Italy

Dielectrophoresis (DEP) is a method for cell manipulation without physical contact in lab-on-chip devices, since it exploits the dielectric properties of cells suspended in a microfluidic sample, under the action of locally generated high-gradient electric fields. The DEP platform that ... Read More