Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Origin of Mass-change Sensitivity within Multi-layered, Non-uniform, Piezoelectrically-actuated Millimeter-sized Cantilever (PEMC) Biosensors: Vibrational Analysis through Experiment and Finite Element Modeling (FEM)

B.N. Johnson[1], and R. Mutharasan[1]

[1]Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA

A 3D finite element model (FEM) of the PEMC sensor was developed to characterize the modes of vibration that have demonstrated high sensitivity to mass-change in experimentally fabricated sensors. The fundamental bending mode of vibration and the 1st bending harmonic are predicted at 10.0 kHz and 86.8 kHz, respectively, within approximately 5 % of the experimentally measured resonances. The ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the ...

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...

A Comparison of Mass Reduction Methods for Silicon-on-Oxide (SOI)-based Micromirrors

H. J. Hall [1], L. A. Starman [1],
[1] Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA

Beam steering and adaptive optics micromirror applications commonly demand optically flat surfaces with minimal mass. When reflective coatings (usually metallic Au or Al) are applied to micromirror surfaces in order to meet optical reflectivity requirements the resulting film stress (usually tensile) can be substantial. The mass of the mirror can be a limiting factor in the dynamic performance. ...

FEM Modeling in Robust Design for Graphene-Based Electromagnetic Shielding

S. Elia [1], G. Granata [1], P. Lamberti [1], V. Tucci [1],
[1] University Of Salerno, Italy

Electromagnetic shielding design is usually approached referring to nominal values of the main parameters. This could lead to malfunctioning devices and its performance differ widely from what was really aimed at or, worse, the final design product could even be physically unrealizable. This work presents a robust approach to the design of EM Shielding based on Graphene (Gph) layers. It is a two ...

Study of Fluid and Mass Adsorption Model in the QCM-D Sensor for Characterization of Biomolecular Interaction

H.J. Kwon[1], C.K. Bradfield[1], B.T. Dodge[1], and G.S. Agoki[1]
[1]Department of Engineering and Computer Science, Andrews University, Berrien Springs, Michigan, USA

Increasing attention has been paid to application of the quartz crystal microbalance with dissipation (QCM-D) sensor for monitoring biomolecular interactions. This paper focuses on a practical application of protein-protein binding affinity measurement at low concentrations and minimal sample sizes (50-200 μl of 20-200 nM), which results in low signal measurement. A model simulating fluid ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Interactive Design of an Electrostatic Headphone Speaker Using COMSOL Serverâ„¢

B. A. Marmo [1], M. P. Snaith [1],
[1] Xi Engineering Consultants, Edinburgh, United Kingdom

An electrostatic headphone includes many interrelated design elements that affect the frequency response of the headphone and the users listening experience. Xi Engineering Consultants (XI) partnered with Warwick Audio Technologies (WAT) to investigate the complex behavior of one-side electrostatic speakers. Xi developed a GUI that helped WAT engineers optimize their speaker using virtual tools ...

Analysis of Geometrical Aspects of a Kelvin Probe

I. Kuehne [1], S. Ciba [1], A. Frey [2],
[1] Heilbronn University, Kuenzelsau, Germany
[2] University of Applied Sciences, Augsburg, Germany

The presented analysis investigates the capacitance characteristic of a Kelvin probe regarding the geometrical transition from a movable electrode plate to a narrow tip. Moreover, predictions can be done concerning optimum geometry, sensitivity and suitable electrical measurement circuitry. A further aim of this study is to provide optimal tip geometries for different sized Kelvin probes. This ...