Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Analysis of MEMS Capacitive Presure Sensor with Segmented Boss Structure for Diaphragm

A. K. Ramesh [1], P. Ramesh [1],
[1]College of Engineering Munnar, Munnar, Kerala, India

Microelectromechanical system (MEMS) based capacitive pressure sensor designs with improved sensitivity is always a matter of great concern and the recent developments in such a design is the MEMS capacitive pressure sensor with bossed diaphragm.The bossed diaphragm model improves sensitivity but it compromises the range of operation which lead to a new design with the segmented boss structure. ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to ...

Modeling Flow of Magnetorheological Fluid through a Micro-channel

N.M. Bruno[1], C. Ciocanel[1] and A. Kipple[2]
[1]Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
[2]Dept. of Electrical Engineering and Computer Sciences, Northern Arizona University, Flagstaff, Arizona, USA

This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means of displacement of a MR fluid slug within a microchannel.

A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials

J. Schumacher[1], P. Fideu[2], G. Ziegmann[1], and A. Herrmann[3]
[1]TU Clausthal-Institute of Polymere Materials and Plastic Engineering, Clausthal-Zellerfeld, Germany
[2]CTC GmbH Stade, Stade, Germany
[3]Faserinstitut Bremen e.V., Bremen, Germany

The current paper focuses on the creation of a consistent environment for the numerical prediction of the physical properties of polymer composite. A limitation factor for the successful simulation of composite processes is the correct estimation of the effective properties depending on several factors such as the constituents (fiber, polymer), the process setup. The numerical prediction of the ...

Simulation of Thermal Sensor for Thermal Control of a Satellite using COMSOL

G. Mangalgiri
BITS Pilani
Zuarinagar, Goa

Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes a deflection in the composite beam thereby causing it to impinge on the piezoelectric ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Investigation on MEMS Based Thermal Sensor for Cancer Detection

A. V. Lakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

This paper presents the design and simulation of a thermal sensor using COMSOL Multiphysics® software for the detection of low body temperature syndrome which can allow the early detection of cancer. This sensor is made of an alloy consisting of two materials with different coefficients of thermal expansion. The main objective of this work is to investigate the structural change in the sensor ...

Design and Analysis of Stacked Micromirrors

S. Park, S. Chung, and J. Yeow

University of Waterloo, Systems Design Engineering, Waterloo, Ontario, Canada

A micromirror or a torsional actuator in general has been proven to be one of the most popular actuators fabricated by Micro-Electro-Mechanical System (MEMS) technology in many industrial and biomedical applications such as RF switches, a laser scanning display, an optical switch matrix, and biomedical image systems. In this paper, two stacked micromirrors are presented and analyzed to show ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...