Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

MEMS Based Tactile Sensors for Robotic Surgery

V. Nivethitha[1], S. P. Rakavi[1], K. C. Devi[1]
[1]PSG College Of Technology, Coimbatore, Tamil Nadu, India

In this work, a piezoelectric tactile sensor will be designed and simulated using COMSOL Multiphysics®. The sensor is designed in order to assess the pressure exerted on the human body while the robotic surgery is performed. The sensor consists of a rigid and compliant cylindrical element. A circular PDMS (Polydimethylsiloxane) film is sandwiched between the rigid cylinder and the base plate to ...

Modelagem Computacional de Difusores para Microbombas

A. G. S. Barreto Neto [1], A. M. N. Lima [2], C. S. Moreira [1],
[1] Instituto Federal de Ciência e Tecnologia - IFPB, João Pessoa, PB, Brasil
[2] Universidade Federal de Campina Grande - UFCG, Campina Grande, PB, Brasil

Este trabalho trata do dimensionamento da estrutura bocal/difusor utilizando a simulação computacional com fronteira móvel. Esse tipo de simulação contempla toda estrutura da bomba, isto é, câmara de bombeamento, difusor e área de dispersão de fluxo, de modo a contabilizar o refluxo em função da estrutura, possibilitando um projeto mais realísticos da estrutura.

Mechanical Model of RF MEMS Capacitor Structures

R. Chatim[1]
[1]University of Kassel, Kassel, Germany

In order to design an RF MEMS based device, it is beneficial to have information concerning mechanical behavior. For model verification purpose, solution offered by simulation software equipped with predefined physics application is one valuable way to provide initial reference. To avoid unwanted particular total strain in RF MEMS structures, a compensation layer can be utilized. When the number ...

Modelling of SiC Chemical Vapour Infiltration Process Assisted by Microwave Heating

G. Maizza[1] and M. Longhin[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor mechanical strength and toughness of SiC/SiC composites manufactured by CVI (Chemical Vapour Infiltration) process. This work presents a micro/macro Microwaveassisted Chemical Vapour Infiltration (MW-CVI) model as a strategy to attack the problems above. The proposed model couples a reactor ...

Dynamic Observation of Magnetic Particles in Continuous Flow Devices by Tunneling Magnetoresistance Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

Dynamic measurement of magnetic particles in continuous flow devices is made very difficult by the limitations imposed by the sensors themselves. Thus, certain sensor layouts are restricted to either number sensitive or spatial resolutive measurements of magnetic particles. We investigate different new strategies to increase the detection threshold and introduce designs accomplishing both: ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

Design and Analysis of Implantable Nanotube Based Sensor for Continuous Blood Pressure Monitoring

M. Silambarasan, T. Prem Kumar, M. Alagappan, and G. Anju
PSG College of Technology
Tamil Nadu, India

The present work aims to develop a blood pressure sensor using MEMS/NEMS technology. A normal blood pressure detector is used externally, but this work mainly aims for designing an implantable nanotube based sensor for continuous monitoring of blood pressure. The use of COMSOL Multiphysics 4.1 acts as a good platform to develop a nano tube based sensor design by using the MEMS module. The ...

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Computational Simulation of Electrohydrodynamic Systems Pertaining to Micro and Nano scale Fluid Flow Phenomenon

M. Seiler[1], and B. Kirby[2]
[1]Department of Engineering Physics, Cornell
University, NY, USA
[2]Department of Mechanical Engineering, Cornell
University, NY, USA

Modeling of 3D AC electro-osmotic pumps is relevant to the creation of portable or implantable lab-on-a-chip devices for mm/s tunable fluid flows attainable with battery scale voltages. In this analysis using COMSOL Multiphysics we investigate the modeling challenges of computationally calculating systems of fluid flow phenomena governed by AC Electroosmosis in the micro and nano scale regimes.