Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

Evaluation of Tensile Modulus of Carbon Nanotube Bundle Based Composite with Interface Using Finite Element Method

M. S. Islam, F. O. Riktan, S. C. Chowdhury, M. M. R. Chowdhury, and S. Ahmed
Bangladesh University of Engineering & Technology (BUET)
Dhaka, Bangladesh

Carbon Nanotubes (CNTs) have remarkable mechanical, thermal and electrical properties. The properties of CNTs depend on atomic arrangement (how the sheets of graphite are rolled), the diameter and length of the tubes and morphology of nanostructure. In this paper effective elastic properties of CNT based polymer composites are evaluated using a square Representative Volume Element (RVE) in ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

Simulations of Micropumps Based on Tilted Flexible Structures - new

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC., Needham, MA, USA
[2]Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

Particle Flow Control by Magnetically Induced Dynamics of Particle Interactions

F. Wittbracht[1], A. Weddemann[1], A. Auge[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is therefore zero. The theoretical idea will be tested experimentally. Here, additional effects originating from ...

Chemical Reaction Engineering: Difusão com Biotransformação

D. R. M. Vieira [1], S. A. Cardoso [1], A. S. Santos [1],
[1] Universidade Federal do Pará, Pará, Brasil

A biotransformação de substratos utilizando enzimas imobilizadas em nanopartículas presentes num meio fluido (substrato), contido num bioreator CSTR, foi investigada. O software COMSOL Multiphysics foi usado para simular o sistema através do uso das equações de difusão de espécies apropriadas para o consumo do substrato. Nessa investigação, a difusão na superfície da nanopartícula, onde ocorre a ...

Finite Element Analysis of Contact Studies of Radio Frequency MEMs Switch Membranes

J. Liu [1], V. B. Chalivendra [1], C. Goldsmith [1], W. Huang [1]
[1] University of Massachusetts - Dartmouth, Dartmouth, MA, USA

Radio frequency (RF) micro-electro mechanical system (MEMS) switch works in on/off modes controlled by electrostatic forces. In off mode, rough surfaces of electrodes come into a contact. Membrane contact surfaces have complex surface roughness patterns and the mechanical contact problem is very challenging to understand. The capability to predict contact quality becomes extremely important to ...

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are used to open the valve.  A device model and a design optimization strategy using COMSOL ...