See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
: One of the most commonly used techniques for quantification of beating forces exerted by cardiomyocytes is culturing them on a bed of vertical microcantilevers or microposts. The position of the microcantilevers is observed through advanced imaging techniques and the displacements are ... Read More
A numerical simulation study, using COMSOL Multiphysics®, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material ... Read More
Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very ... Read More
Perspiration during intense physical activity is an essential part of human thermoregulation. Clothing affects the cooling rate of the body. Heat and water vapor are coupled through evaporation and transported through the fabric. A model of the above system was developed for fabrics of ... Read More
Insulin released by the beta-cells of pancreatic islets is the main regulator of glucose homeostasis, hence, insulin secretion models are of considerable interest for many possible applications. Building on our previous oxygen consumption and cell viability model for avascular islets of ... Read More
In this work, we present the performance analysis of novel micro machined Piezoresistive fluid flow pressure sensor using COMSOL Multiphysics. The principle of the sensing mechanism is based on the deflection of four sensing layers embedded on a thin membrane. The fluid passes through ... Read More
A characteristic feature of nanochannels is that surface properties (e.g., electrical charge) play a more significant role in the transport of fluid and electrolyte. Two oppositely directed flows (electroosmotic flow and pressure-driven flow) determine the flow profile at the nanopore ... Read More
The world’s landfills are beginning to fill up due to the growing human population. Landfills require land and there will come a time when there will be no land to be used for landfills. A solution that is gaining attraction is the conversion of traditional “dry-tomb” landfills (used for ... Read More
Submerged membrane bioreactor (SMBR) is an efficient technology for wastewater treatment that combines biological process and membrane filtration in one single stage. In the most usual configuration, submerged membrane hollow fibers are set in several planes. Air is introduced from the ... Read More
Microfluidic devices and lab-on-a-chip (LOC) require the ability to transport or pump reagents or reaction products, the ability to effectively mix small volumes of fluid, and provide direct data display. Surface acoustic wave (SAW) driven acoustic streaming generated by a piezoelectric ... Read More
