See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
During cryopreservation of human embryos, ice crystal formation in the embryos or in surrounding media may cause cryodamage to them and can be lethal. A strategy to avoid this is the vitrification procedure when the embryo and the surrounding medium undergo the transition to glassy state ... Read More
Efficient modeling and computation of the nonlinear interaction of fluid with a solid undergoing nonlinear deformation has remained a challenging problem in computational science and engineering. Direct numerical simulation of the non-linear equations, governing even the most simplified ... Read More
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is an 85 MW, light-water moderated, research reactor that operates at low temperature and high pressure. The HFIR is presently scheduled to convert from a high enriched uranium fuel (HEU) to a low enriched ... Read More
Using COMSOL® 3.5a, models were created to simulate the heat transfer between the working fluid and the selective coating as well as the natural convection of the working fluid itself. In these models, a constant heat input on half of the selective coating facing the sun was considered ... Read More
This paper describes the development of a COMSOL model of Electro-Chemical-Mechanical Planarization (ECMP) that was validated with experimental data. ECMP is used for processing of semiconductor wafers. We developed a 2D model of flow of phosphoric acid solution (the electrolyte) between ... Read More
We present computer simulation results for PEM fuel cells using COMSOL Multiphysics® software. We have developed novel PDE equations at NPL from first principles and these are more realistic than models typically used in literature. The theory includes Maxwell-Stephan and Nernst-Planck ... Read More
Accurate and efficient tracking is important for designing particle accelerators as well as many other applications which use electromagnetic fields to control particles. We have developed a tracking code in MATLAB® Simulink® which uses electric and magnetic fields calculated in COMSOL ... Read More
Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale ... Read More
• Real-time detection and monitoring of bio-fuel blend-ratio and adulterated automobile fuels by a reproducible micro-fabrication process in a cost-and-time efficient manner. • COMSOL Multiphysics® simulations and modelling of Viscosity based Laminar Flow inside a Y-shaped Micro ... Read More
The work is focused on the numerical analysis of forced convection in curved tubes investigating the correlation between the heat transfer and friction factor enhancement and the effects of the wall curvature. The analysis was performed by integrating the continuity, momentum and energy ... Read More