Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of Fluid Dynamics and Heat Transfer in MEMS Structures

S. N. Das[1], G. Bose[2]
[1]Centurion University of Technology and Managment, Jatani, Bhubaneswar, Orissa, India
[2]Institute of Technical Education and Research, SOA University, Bhubaneswar, Orissa, India

This paper describes the characteristics of MEMS microchannel and various issues of its designing. Here the major parameters are pressure drop and heat transfer rate. Various structures are modeled and optimized to get a minimum pressure drop and maximum heat transfer rate. The simulation results provide the characterization for Temperature, Mass flow rate, Pressure drop and Reynolds number. ...

Simulating Thermotherapeutic Response Induced by Thermal Padding for Treating Acute Injuries

J. Kantor[1], Y. Feng[1], C. Acosta[1], E. Massingill[1]
[1]University of Texas at San Antonio, San Antonio, TX, USA

Cryotherapy and thermotherapy are common methods of treatment for acute injuries ranging from ankle sprains to complex surgery. The idea behind such treatment is that a change in temperature will reduce pain and constrict fluctuations in blood flow at the targeted area. The purpose of this study is to simulate the vascularized tissue reaction and the resulting blood flow fluctuation from thermal ...

Structural Mechanics for Real Geometry of Basalt Woven Composites

J. Salacova[1]
[1]Technical university of Liberec, Department of Material Engineering, Liberec, Czech Republic

Woven composites with basalt reinforcement plain 1x1 are examined to define structural mechanics. Woven composites were created by the prepreg technology, 8 layers of plain-weave basalt fabrics were saturated by the precursor, polysiloxane matrix Lukosil®, and joint pressed during temperatures of 200°C and 600°C. The yarns consist of 8000 fibres assembled without twisting. Voids complete entire ...

Optimizing Transducer Configuration of Capacitive Sensors for Agricultural Applications

N. Stroia[1], D. Moga[1], G. Mocanu[1], Z. Barabas[1], R. Moga [2]
[1]Technical University of Cluj-Napoca, Cluj-Napoca, Romania

This work aims to determine optimized configuration using COMSOL Multiphysics® for a class of transducers. Two types of capacitive sensors needed for monitoring and control in agriculture are investigated: a rain sensor and a soil humidity sensor. COMSOL Multiphysics® is used to test various configurations for both transducers, like the number of teeth in the comb, the depth of the teeth, the ...

Multiscale Electromagnetic Modeling of Contractions in the Pregnant Uterus - new

V. Tidwell[1], P. LaRosa[2], M. Zhang[1], H. Eswaran[3], A. Nehorai[1]
[1]Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
[2]Monsanto Company, Technology Pipeline Solutions, St. Louis, MO, USA
[3]OB/GYN Department, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Uterine contractions during pregnancy are currently poorly understood – experts disagree on the mechanisms by which contractions propagate through the organ and the structural layout of the uterine muscle fibers. We have developed a multi-scale model of the uterus, at the cellular, tissue, and organ levels. By comparing simulated abdomen-level magnetic field readings from our model to clinical ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

Multi-Layers Surface Coil Design: Geometry Optimization - new

S. Aissani[1], L. Guendouz[2]
[1]CRM2, Institut Jean Barriol, University of Lorraine, Vandoeuvre-lès-Nancy, France
[2]Mesures et architectures électroniques, University of Lorraine, Vandoeuvre-lès-Nancy, France

Nuclear Quadrupole Resonance (RQN) is a radio frequency (RF) spectroscopic technique that is used to detect quadrupole nuclei such as Nitrogen-14. NQR was found to be a good candidate for detecting narcotics, explosives and medicines [1]. However, due to its low sensitivity the use of NQR is still limited. One way to increase the sensitivity is to improve the RF coil by means of a better RF ...

Micromachined Silicon Integrating Cavities for Far-Infrared Bolometer Arrays - new

M. Audley[1], G. de Lange[1], G. Keizer[1], C. Bracken[2]
[1]SRON Netherlands Institute for Space Research, Groningen, The Netherlands
[2]National University of Ireland, Maynooth, Co. Kildare, Ireland

We are investigating gold-plated micromachined silicon integrating cavities for arrays of far infrared Transition Edge Sensor bolometers. We present the results of our simulations and show how we used COMSOL Multiphysics® software to optimize the geometry of the integrating cavity. We show that we can achieve a high optical efficiency over a wide frequency range.

Temperature Gradients Controlled Broadband Acoustic Omnidirectional Absorber - new

F. Qian[1], L. Quan[1], X. Liu[1]
[1]Institute of Acoustics and School of Physics, Nanjing University, Nanjing, China

Previous research into acoustic omnidirectional absorber (AOA) has shown the feasibility of forming acoustic black hole to guide the incident wave into the central absorptive cavity. However, major restrictions to practical applications exist due to complexity of designing metamaterials and unchangeable working states. Here, we propose two cylindrical, two-dimensional AOA schemes based on ...

Benchmark Model: Natural Convection of Water-Aluminum Oxide Nanofluids in a Square Cavity

M. Z. Saghir [1], A. Ahadi [1], A. A. Mohamad [2],
[1] Department of Mechanical Engineering, Ryerson University, Toronto, ON, Canada
[2] Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada

Nanofluids is a new class of fluid consisting of particles in a liquid. Different base liquid has been proposed and the most common one is water. The concentration of these particles can range from 0.1% to 5% or greater. Different numerical models have been proposed to solve this interesting problem. Some scheme assumed the fluid as a single fluid and other assumed as a two phase system ...