See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Mapping the Limitations of Breakthrough Analysis in Fixed-Bed Adsorption

J. Knox [1],
[1] NASA Marshall Space Flight Center, Huntsville, AL, USA

In a recent publication (Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption, Ind. Eng. Chem. Res. 2016, 55, 4734-4748) the authors discussed the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer ... Read More

Simulation and Design of Lithium Ion Battery Packs for the Altitude Conditions in Northern Chile

A. Mallco Carpio [1], M. Cortes Carmona [1],
[1] University of Antofagasta, Antofagasta Energy Center, Antofagasta, Chile

One of the most noticeable effects in loss of performance and capacity of thermal systems is produced by altitude. This causes that the density of a compressible fluid and the atmospheric pressure are considerably reduced, causing a decrease in electrical power and thermal systems. Given ... Read More

Heat generation breakdown of Lithium-ion Batteries

ZhiJun Qiu [1], WeiDong Fu;JiaXin Li [1],
[1] Contemporary Amperex Technology Co.

Abstract:The thermal behavior of lithium ion batteries could be investigated by efficient simulation method [1,2]. Here, we developed an electrochemical-lumped thermal analytical model to analyze the thermal response and heat breakdown of a pouch LiNi1/3Co1/3Mn1/3O2 battery (3Ah) under ... Read More

Laser-Material Interaction Modeling using the COMSOL Multiphysics® software

E. C. Chevallier [1], V. Bruyère [1], P. Namy [1],
[1] SIMTEC, Grenoble, France

Surface engineering is a key technology used in a wide range of sectors in industry. Among other techniques, it involves adding functionality to a surface. This can be performed by creating a specific topography to a surface using laser texturing. The objective of the work presented in ... Read More

Numerical Study of the Tuning, Pressure Sensitivity and Lorentz Force Detuning of SRF Crab Cavities

E. Cano-Pleite [1], A. Amorim [1], J. S. Swieszek [1], K. Artoos [1], O. Capatina [1],
[1] European Organization for Nuclear Research (CERN), Geneva, Switzerland

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator. The LHC machine consists on a 27 km circumference tunnel that accelerates and collides proton beams and heavy ions. The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the LHC ... Read More

Calculation of the Helmholtz Resonator Using COMSOL® in an Acoustic Lecture

Y. Koike [1], M. Hashiguchi [2], D. Mi [2],
[1] Department of Electronic Engineering, College of Engineering, Shibaura Institute of Technology, Koto, Tokyo, Japan
[2] Engineer Division 1, Keisoku Engineering System Co., Ltd., Chiyoda-ku, Tokyo, Japan

In the field of electronic, electro-acoustic apparatus is one of the important applications. There is an acoustic class in the department of electronic engineering, Shibaura Institute of Technology. The class is “Acoustic systems” which opens in 2nd semester of 3rd year. To foster the ... Read More

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are ... Read More

Simulation of Surface Chemical Reactions in a Monolith Channel for Hydrogen Production

N. Pacheco[1], D. Pavone[1], K. Surla[1], J. Houzelot[2], and E. Schaer[2]
[1]IFP-Lyon, Solaize, France
[2]ENSIC, Solaize, France

This paper intends to show a model of a monolithic reactor for the autothermal reforming process (ATR), a process that uses hydrocarbons to produce H2. The ATR chemical reactions take place on the surface of monolith channels coated with a catalyst. The isothermal ATR reactor is modeled ... Read More

Modeling a 3D Eddy Current Problem Using the Weak Formulation of the Convective A-phi Steady State Method

J. Bird[1]

[1]University of North Carolina, Charlotte, North Carolina, USA

A 3D model of a magnetic rotor both rotating and translationally moving at high-speed over a conductive guideway is modeled in steady-state using the convective A*-Φ formulation. The presence of the magnetic rotor (source field) is incorporated into the formulation via the boundary ... Read More

2D Extraction of Open-Circuit Impedances of Three-Phase Transformers

R. Escarela-Perez[1], E.A. Gutierrez-Rodriguez[2], J.C. Olivares-Galvan[1], M.S. Esparza-González, and E. Campero-Littlewood[1]


[1]Departamento de Energia, Universidad Autonoma Metropolitana - Azcapotzalco, Mexico D.F., Mexico
[2]Instituto Tecnologico de Aguscalientes, Aguascalientes, Mexico

This work is concerned with the study of the asymmetrical phenomenon observed in three-phase transformers during the standard short-circuit test. The purpose of our work is to see if the asymmetric measurements can be predicted with the use of 2D finite-element models. To this end, we ... Read More