Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Advanced Multiphysics Actuation Model of Ionic Polymer-Metal Composites

D. Pugal[1], K. Kim[1], and A. Aabloo[2]
[1]ME Department, University of Nevada Reno, Reno, NV
[2]University of Tartu, Tartu, Estonia

Modeling electromechanical actuation of ionic polymer-metal composite (IPMC) material is considered in this work. Ionic current in the polymer is described with the Poisson-Nernst-Planck system of equations. Calculated ionic concentration is related to the deformation of the material. To include the effect of the electrodes, the ionic current and the electric current in the electrode domains is ...

Complex Geometry Creation and Turbulent Conjugate Heat Transfer Modeling

I. Bodey[1], R. Arimilli[1], and J. Freels[2]
[1]Dept. of Mechanical, Aerospace and Biomedical Eng., The University of Tennessee, Knoxville, TN
[2]Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is an 85 MW, light-water moderated, research reactor that operates at low temperature and high pressure. The HFIR is presently scheduled to convert from a high enriched uranium fuel (HEU) to a low enriched uranium fuel (LEU) in 2019. Due to cost constraints, not all experiments will be repeated for the LEU fuel ...

Accurate Parameters Extraction of Multiconductor Transmission Lines in Multilayer Dielectric Media

S. Musa[1], M. Sadiku[1], and O. Momoh[2]
[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Indiana University-Purdue University

Development of very high speed integrated circuits is currently of great interest for today\'s technologies. This paper presents the quasi-TEM approach for the accurate parameters extraction of multiconductor transmission lines interconnect in single, two, and three-layered dielectric regions using the finite element method (FEM). We illustrate that FEM is accurate and effective for modeling ...

High Field Magnetic Diffusion into Nonlinear Ferrimagnetic Materials

J-W. Braxton Bragg[1], J. Dickens[1], A. Neuber[1], and K. Long[2]
[1]Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, TX
[2]Dept. of Mathematics, Texas Tech University, Lubbock, TX

Ferrimagnetic based, coaxial nonlinear transmission lines (NLTLs) provide a means to generate sub-nanosecond risetime pulses (from nano-second input pulses) or megawatt level high power microwave oscillations, depending on the geometry, material, and external bias fields. This investigation uses the commercially available, finite element solver COMSOL to provide insight into pulse behavior. ...

Modeling of Galvanic Interactions between AA5083 and Steel under Atmospheric Condition

D. Mizuno, Y. Shi, and R. Kelly
University of Virginia
Charlottesville, VA

Aluminum alloys 5000 series are widely used within the cabins of ships. These aluminum alloys are often joined via steel bolts. There is thus a concern that galvanic interactions will exacerbate corrosion of the aluminum alloys. In this study, a model of the galvanic corrosion between aluminum alloy AA5083 and steel under atmospheric conditions was built. The Nernst-Plank equation and the ...

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. ...

Simulation of Thermal Sensor for Thermal Control of Satellite Using COMSOL Multiphysics

G. Mangalgiri
BITS Pilani K K BIRLA GOA CAMPUS
Zuarinagar
Goa, India

The actuator comprises of a temperature sensitive composite deflecting beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes an expansion in the composite beam thereby causing it to deflect. The deflecting beam impinges on the piezoelectric crystal and generating voltage. Response curves for the deflection versus temperature for temperature ranges ...

Ferromagnetic Materials for MEMS- and NEMS-Devices

A. Weddemann, J. Jadidian, S. Khushrushahi, Y. Kim, and M. Zahn
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge MA

The modeling of ferromagnetic materials is a challenging task of high industrial and academic impact. Thin film and granular systems form the basis of novel spintronic devices such as modern hard drives with a high data area storage density. In order to push the current limits even further and to design more efficient devices, a strong understanding of the governing dynamics is required. We ...

A Method for Efficient Calculation of Diffusion and Reactions of Lipophilic Compounds in Complex Cell Geometry

Kristian Dreij[1], Qasim Ali Chaudhry[2], Bengt Jernström[1], Ralf Morgenstern[1], and Michael Hanke[2]
[1]Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
[2]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation ...

Numerical Study of the Scattering of a Short-Pulse Plane Wave by a Buried Sphere in a Lossy Medium

F. Frezza[1], F. Mangini[1], M. Muzi[2], P. Nocito[3], E. Stoja[1], N. Tedeschi[1]
[1]Department of Information Engineering, Electronics and Telecommunications, "La Sapienza" University of Rome, Rome, Italy
[2]Institute of Advanced Biomedical Imaging, "G. d'Annuzio" University Fondation, University "G. d'Annuzio" Chieti-Pescara, Chieti, Italy
[3]Istituto Superiore C.T.I., Communications Department, Ministry of Economic Development, Rome, Italy

The scattering by a buried sphere in the frequency domain with the use of the Finite Element Method (FEM) implemented by COMSOL Multiphysics, is analyzed. A short-pulse is used as an excitation with the spectrum spanning from 50 MHz to 1 GHz. In order to validate our results, a comparison with data available in the literature is presented, in the simple case of a perfectly-conducting (PEC) ...

2691 - 2700 of 3390 First | < Previous | Next > | Last