Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development of Magnetic Field Components for the Polarisation Option of the Neutron Spectrometer FOCUS

L. Holitzner[1], U. Filges[1], J.P. Embs[2], T. Fennell[2], T. Panzner[1]
[1]Laboratory for Developments and Methods, Paul Scherrer Institut, Villigen, Switzerland
[3]Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland

We show a new, favourable space-saving method to host a neutron polarizer in the iron-containing monochromator shielding of a time-of-flight spectrometer for cold neutrons. In this poster you can learn e.g., how to create a robust, homogeneous, rectangular magnetic field (here realized by permanent magnet queues inside an iron tube). The time-of-flight spectrometer FOCUS at the spallation ...

Understanding the Role of Nanomaterials in DNA Biosensors Through Finite Element Analysis

J. C. Kumaradas[1], A. Zhang[2], Y. D. Davletshin[1]
[1]Ryerson University, Toronto, ON, Canada
[2]University of Waterloo, Waterloo, ON, Canada

Tremendous progress is being made in the integration of nanoparticles into micro-analytical systems for biosensing. These materials are shown to enhance the analyte capture capability of biosensing platforms. We have implemented a computational model that considers the sensor’s geometry, size, analyte concentration and type to predict the number of nucleic acid molecules captured by ...

Studying the Sensitivity of the Wrinkling Process to Mesh Imperfections Using COMSOL Multiphysics® and LiveLink™ for MATLAB®

S. K. Saha[1], M. L. Culpepper[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Wrinkles are formed on a thin film as a result of buckling-based instabilities. This can be used as an inexpensive fabrication technique for generating micro and nano scale periodic patterns. Finite element techniques are used for the predictive design of complex wrinkling patterns. As wrinkles are formed via a bifurcation process, the accuracy of these models is dependent on the initial ...

Can we use Aquifers to Monitor Magma Chambers? Using COMSOL Multiphysics® to Investigate Subsurface Strain Changes and Their Effect on Hydrological Systems - new

K. Strehlow[1], J. Gottsmann[1], A. Rust[1]
[1]University of Bristol, Bristol, UK

Groundwater-bearing geological layers respond to and modify the surface expressions of magmatic activity, and they can also become agents of volcanic unrest themselves. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes and include a wide range of phenomena and suggested processes to explain them (e.g., Newhall et al., ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis - new

K. Park[1], S. Hamian[1], A. M. Gauffreau[2], T. Walsh[2]
[1]Mechanical Engineering Department, University of Utah, Salt Lake City, UT, USA
[2]Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI, USA

This work investigates the frequency-dependent electrothermal behaviors of freestanding doped-silicon heated microcantilever probes operating under the periodic (ac) Joule heating. The transient heat conduction equation for each component (i.e., the low-doped heater region, the high-doped constriction region, and the high-doped leg region) is solved using the general heat transfer module for DC ...

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from medical field to space explorations. They convert physical parameters such as temperature, pressure, humidity etc: - into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of pressure sensors. Improvement in the sensitivity is the major factor to be considered while designing pressure ...

COMSOL Simulation of Flash Lamp Annealed Multilayers for Solid State Electrolyte Fabrication

C. Cherkouk [1], T. Nestler [1], M. Zschornak [1], T. Leisegang [1], D. C. Meyer [1],
[1] Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, Freiberg, Germany

All-solid-state batteries are among the next generation battery concepts that are currently being envisaged among both the international research community and industrial electronic vehicle producers. In addition to a long lifetime of more than several thousand cycles and intrinsic safety, applying solid electrolytes offers a high energy density due to larger electrochemical windows. Aluminum is ...

A Strategy to Simulate Radio Frequency Heating Under Mixing Conditions

S. Wang [1], L. Chen [1],
[1] Northwest A&F University, Yangling, Shaanxi, China

A computer simulation model was developed using finite element-based commercial software, COMSOL Multiphysics®, to simulate temperature distributions in wheat samples packed in a rectangular plastic container and treated in a 6 kW, 27.12 MHz RF system with and without mixing conditions. The developed model was then experimentally validated by temperature distributions of three layers without ...

Simulation of Gas Injection with the Level Set Method

J. E. Rivera-Salinas [1], A. Cruz-Ramírez [1]
[1] National Polytechnic Institute - ESIQIE, Department of Metallurgy and Materials, Mexico

The physical mechanisms that operate in gas injection are complex, since the bubble formation at submerged orifices involves a wide range of length and time scales, bubble coalescence occurs, rapid pressure variations around the gas bubble produce the wobbling of the bubble, as well as the high velocities involved in the bubble bursting phenomenon on the free surface, among the others. In this ...