Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Reliability Testing for the Next Generation of Microelectronic Devices

J. Plawsky, W. Gill, M. Riley, J. Borja, and B. Williams
Rensselaer Polytechnic Institute, Troy, NY, USA

Understanding and predicting the reliability of new generations of high and low-k dielectrics is increasingly important for gate oxides and interlayer dielectrics as both films have become thinner and scaling of device operating voltages has not kept pace with the decrease in the size of the dielectrics. We have developed a series of COMSOL-based mass transfer-based models that have proven to ...

Physical and FEM Simulation of Microprobe Insertion into Brain Tissue

A. Eed Olamat, U. Hofmann, B. Pohl, and N. Nkemasong
University of Lübeck, Institute for Signal Processing, Lübeck, Germany

In order to investigate the implantation of microprobes into brain tissue, we developed a finite-element and a physical model to replace real biological tissue for mechanical testing. Penetrating forces of a tungsten indenter into a layered structure was investigated with different indentation speeds. Numerical and physical model are in good correspondence to each other and reproduce measured ...

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. However the parameters directly accessible from experiments are the time required for a stream to be observed and ...

Optimal Design of Slit Resonators for Acoustic Normal Mode Control in Rectangular Rooms

S. Floody[1], R. Venegas[2], and F. Leighton[3]
[1]Universidad de Chile, Facultad de Artes, Departamento de Música y Sonología, Licenciatura en Sonido, Santiago, Chile
[2]University of Salford, Acoustics Research Centre, Salford, UK
[3]Universidad Tecnológica de Chile Inacap, Sede Pérez Rosales, Santiago, Chile

The present article presents a method to redistribute the acoustic modes of a rectangular enclosure in the low frequency range using slit resonators. The objective of the present work is to compare different strategies of optimal design in order to determine the dimensions of the resonators. The method of the finite elements will be used to model the acoustic physical behavior of the room. In ...

Shear Induced Detachment Of Microorganisms Attached To A Plane Wall

B. Boulbène, J. Morchain, and P. Schmitz
Université de Toulouse, NSA, UPS, INP, LISBP, Toulouse, France

We present numerical results involving microorganisms adhering to a plane surface submitted to a shear flow. The purpose is to have a better understanding of the removal mechanisms occurring during the cleaning in place of food processing equipments. The biological cell, i.e. the microorganism, is modelled as a rigid obstacle embedded in the bottom wall of the fluid domain. Shear induced ...

Aerodynamic Study For Air To Gas Leakage Reduction In A Typical Rotary Regenerative Air Preheater Of Coal-Fired Steam Generators

L. Ferravante[1], C. Zagano[1], and V. Marra[2]
[1]RSE S.p.A. - via Rubattino, Milano, Italy
[2]COMSOL S.r.l. - Via Vittorio Emanuele II, Brescia, Italy

The present study relates to the reduction of the amount of air to gas leakage in a typical rotary regenerative air preheater of coal-fired steam generators, by means of computational thermo-fluid-dynamics. Due to the gaps, or clearances, required for rotation, there is a significant amount of leakage of the higher pressure air to the lower pressure gas stream. This paper presents a turbulent ...

Convergence Rates For Models With Coupled 1D / 2D Subdomains

A. Bradji[1], E. Holzbecher[2], and M.S. Litz[2]
[1]Department of Mathematics, University of Annaba, Algeria
[2]Georg-August Universität Göttingen, Germany

It is well known that the convergence rate of a numerical model is significantly reduced, when the genuine character of the setting with differential equation and boundary condition is not given anymore. Here we examine the decrease of convergence order for models using COMSOL in which the problem set-up includes a coupling between a 1D and a 2D subdomain. In terms of physics we are dealing with ...

Study of Gas Dynamics in the Heat-accumulation Stoves

P. Scotton, and D. Rossi
Dipartimento di geoscienze
Università di Padova
Padova, Italy

The paper aims to clarify some aspects of the gases hydro-dynamics within the twisted conduct of heat accumulation stoves (ceramic-refractory stoves) downstream the combustion chamber. Both Comsol laminar and k-e turbulent models have been used in case of straight and curved pipes with circular, square and rectangular cross-sections, at different Reynolds numbers, in case of smooth wall (Comsol ...

Experimental and Numerical Study of Microbial Improved Oil Recovery in a Pore Scale Model by using COMSOL

M. Shabani Afrapoli, L. Shidong, S. Alipour , and O. Torsaeter
Department of Petroleum Engineering and Applied Geophysics
Trondheim, Norway

A number of visualization experiments are carried out at the laboratory temperature with oil, brine and bacteria suspension for evaluating the performance of MIOR in a glass micromodel. The observations show the effects of bacteria on remaining oil saturation. The interfacial tension reduction, wettability alteration and flow pattern changes are recognized as active mechanisms. COMSOL ...