See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection

Na-MCl2 Cell Multiphysics Modeling: Status and Challenges

R. Christin [1][2], M. Cugnet [2], N. Zanon [3], G. Crugnola [4], P. Mailley [5],
[1] FIAMM, Aubergenville, France
[2] Laboratory for Electrochemical Storage (CEA), Le Bourget du Lac, France
[3] FIAMM R&D, Montecchio, Italy
[4] FIAMM R&D, Stabio, Switzerland
[5] Laboratory of Chemistry for Materials and Interfaces (CEA), Grenoble, France

Introduction: After more than 20 years of experience in EV applications, the sodium nickel chloride technology is fully mature for large scale energy storage. Early on, mathematical modeling of Na-MCl2 cell (M standing for Fe or Ni) has attracted attention to help identifying predominant ... Read More

Analysis of a Plasma-Mediated Photoacoustic Response From Plasmonic Nanoparticles in Ultrashort Regime

A. Hatef [1], B. Darvish [1], A. Dagallier [2], C. Boutopoulos [2], M. Meunier [2],
[1] Nipissing University, North Bay, ON, Canada
[2] École Polytechnique de Montréal, Montréal, QC, Canada

Over the last decade, plasmonic nanoparticles (PNPs) have received growing interest as exogenous contrast agents in the thermal expansion based photoacoustic (PA) imaging technique in biomedical applications [1]. Such functionality is due to the localized surface plasmon resonance (LSPR) ... Read More

Numerical Simulation of Quasi-steady-state Gas Flow in a Landfill

Q. Zheng [1],
[1] Zhejiang University, Hangzhou, Zhejiang, China

Landfill is currently the most dominating method to dispose wastes, which are caused by the lives of residents and constructions of cities and towns. Because of large amounts of organic substances in landfills, they will undergo continuous microbial degradation, which generates a lot of ... Read More

Optimization of Drying Step to Obtain Large, Transparent Magnesium-Aluminate Spinel Ceramics

J. Petit [1], L. Lallemant [1],
[1] ONERA, Chatillon, France

To obtain large transparent ceramic samples, we optimized the drying step process using COMSOL Multiphysics®. Indeed, green body's drying in a climate chamber is the critical step when large size and complex shape samples are needed. Then we obtained 75 mm diameter and 10 mm thickness ... Read More

Stress and Strain of Film on Deformed Polymer–metal

Guibang Cao [1], Xiaolan Xiao [1],
[1] GuangDong university of technology, Guangzhou, China

Polymer–metal is a kind of new composite materials rather than traditional metal packaging materials. It has both features of polymer film and sheet metal. However, the polymer film will damage in the sheet metal forming process. Therefore, we try to established a sheet metal forming ... Read More

A Simulation App for Determining How Best to Cool a Beer Bottle

J. Richter[1], T. Hilbig[1], C. Schröder[1]
[1]University of Applied Sciences Bielefeld, Department of Engineering Sciences and Mathematics, Bielefeld, Germany

The scope of this project was the creation of a short and comprehensive tutorial for the use of COMSOL® Application Builder for students at the University of Applied Sciences Bielefeld. The tutorial is based on the everyday life “problem” how to cool a beer bottle most efficiently. It ... Read More

Uncertainty Assessment and Sensitivity Analysis of Heat Generation within a Lithium-Ion Battery

G. Liebig [1], G. Gupta [1], K. Derendorf [1], C. Agert [1],
[1] DLR Institute of Networked Energy Systems, Oldenburg, Germany

Dedicated work in modeling, simulation and design optimization of Lithium-ion Battery (LIBs) was done in the past decades, and still, the most widely used one for electrochemical processes is the Newman model. [1] The underlying parameters are treated deterministically, but the impact of ... Read More

Modeling the Dynamic Viscous and Thermal Dissipation Mechanisms in a Fibrous Porous Material

B.P. Semeniuk [1], P. Göransson [1],
[1] KTH Royal Institute of Technology, Marcus Wallenberg Laboratory for Sound and Vibration Research, Stockholm, Sweden

The main mechanisms of acoustic attenuation in a bundle of fibres typical of lightweight fibrous porous materials are the dynamic viscous drag forces on the surface of the fibres, and the thermal heat transfer between the solid fibres and the surrounding fluid. Microstructure models ... Read More

3D Optical Human Eye Model Based on COMSOL Multiphysics® to Provide a Test Bench for Laser Surgery

S. Regal [1], R. Delattre [1], M. Ramuz [1],
[1] Department of Flexible Electronics, Ecole Nationale Supérieure des Mines, Centre Microélectronique de Provence CMP-EMSE, MOC, Gardanne, France

We present here the development of an optical human eye model – based on Ray Optics module in order to reproduce the eye optical properties. Current simulations in literature do not fully cover the light propagation inside all parts of the eye by taking into account the absorption but ... Read More

Modeling Approach to Facilitate Thermal Energy Management with Phase Change Materials (PCM)

D. Rubinetti [1], D. A. Weiss [1], A. Chaudhuri [2], D. Kraniotis [2],
[1] Institute of Thermal and Fluid-Engineering, University of Applied Sciences and Arts Northwestern Switzerland
[2] Department of Civil Engineering and Energy Technology, Oslo Metropolitan University, Norway

Thermal energy storage systems receive notable attention within the framework of energy management due to their ability of bridging thermal energy demand and supply, thus leading to an overall efficiency increase. The key component in such systems are materials which convert ... Read More