Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Simulation and Analysis of a Borehole Transient Electromagnetic Reservoir Monitoring System

S.M. Dutta[1], A. Reiderman[1]
[1]Baker Hughes, Houston, TX, USA

Waterflooding and steam-flooding are used worldwide for EOR. Recently, CO2-flooding has attracted global attention as a means of EOR as well as for carbon capture and sequestration. These processes cause significant changes over time in the fluid composition of oil reservoirs. This paper demonstrates the feasibility of a borehole transient electromagnetic (TEM) system that can map the fluid ...

Modeling a Non-Flooding Hybrid Polymer Electrolyte Fuel Cell and Related Diffusion-Migration-Reaction Systems

B.E. McNealy[1], J.L. Hertz[1]
[1]University of Delaware, Newark, DE, USA

Introduction: Understanding the mass and charge transport behavior of heterogeneous systems that include diffusion, migration, and reaction of ions is important in fuel cells, batteries, and other electrochemical applications. Here, a numerical model for charged species transport and reaction has been developed to simulate the electrochemical behavior of a novel type of “non-flooding” hybrid ...

Modeling Low Frequency Axial Fluid Acoustic Modes in Continuous Loop Piping Systems

E. Gutierrez-Miravete[1], E.R. Marderness[2]
[1]Rensselaer Polytechnic Institute, Hartford, CT, USA
[2]General Dynamics-Electric Boat, Groton, CT, USA

Industrial fluid systems often involve continuous piping loops. These systems consist of varying lengths of pipes and hoses connecting multiple components together. Fluid resonances can detrimentally affect the operation of fluid systems and components. This work used COMSOL to investigate the frequency and mode shapes of axial fluid resonances within a system of piping and components that ...

Lowering of the Interstitial Fluid Pressure as a Result of Tissue Compliance Changes during High Intensity Focused Ultrasound Exposure: Insights from a Numerical Model

E. Sassaroli[1], B. O'Neill [1]
[1]The Methodist Hospital Research Institute, Houston, TX, USA

Interstitial fluid pressure (IFP) is elevated in tumors. Owing to this elevated IFP, the interstitial fluid velocity (IFV) is negligible throughout the tumor but significant near the tumor margin. Any therapeutic strategy that can lower IFP will improve drug convection within the tumor and decrease convection of drugs from the tumor margin. High intensity focused ultrasound (HIFU) has been shown ...

Scaling Effect in Air Gap MOSFET

R.V. Iyer[1], Vinay K.[1], A. R. Kamath[1], A. Goswami[1], A. Sharma[1], A. V. Joshi[1], A. Mishra[1], N. S. Pai[1], S. Chakraborty[1], Rakesh D.[1]
[1]PES Institute of Technology, Bangalore, Karnataka, India

This abstract addresses the effect of scaling in air gap MOSFETs and determination of functional relationship between scaling parameter and sensitivity, frequency response. The modelling of the MOSFET and its simulations has been carried out using COMSOL Multiphysics. An air Gap MOSFET in its simplest form can be imagined to be one obtained by replacing the dielectric in a MOSFET with air. The ...

Numerical and Experimental Study of Water Drop Movement Subjected to an Air Stream in Porous Medium

A. Yekta[1], D. Stemmelen[1], S. Leclerc[1]
[1]LEMTA,UMR 7563 CNRS - Université de Lorraine, 54518 VANDOEUVRE-LES-NANCY France

Considering a liquid drop in relative movement with respect to the air flow at uniform velocity, the liquid will be driven to the surface by the viscous friction. Internal vortices will appear inside the drop. This problem has already been studied in fluid mechanics and is well known as a classic problem. The idea of the present work is to resume the same analysis in a porous medium within a ...

Optimization of Mechanical Properties of Superconducting Cavities for Project X LINAC

I. Gonin[1], M. Awida[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermilab, Batavia, IL, USA

Project X is a proposed proton accelerator complex at Fermilab. The CW LINAC is based on five types of resonators operating at three frequencies: half-wave, spoke, and elliptical. The low beam current for the CW operation of Project X requires cavities to operate at a high loaded Q and, thus, narrow bandwidth. Therefore, it requires optimal mechanical design of the cavities to minimize the ...

Water Quality Modeling of Drinking Water Storage Reservoir Noardburgum

N. Wolthek[1]
[1]Vitens NV, Zwolle, The Netherlands

The water storage reservoir at the WTP Noardburgum is used to even out demand and supply and ensure a stable drinking water production capacity. At the moment the rectangular reservoir has a single pipeline which serves as an inlet during the fill cycle and as an outlet during the draw cycle. This study aims to examine the current mixing characteristics of the reservoir and to investigate ...

Modeling Partially Absorbing Biosensors

D. Kappe[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Designing and constructing a lab-on-a-chip device poses a variety of questions. Transport of all required substances, detection of the analyte and its deposition on a sensor have to be incorporated. Different strategies have been developed to achieve good coverages of the sensor, like employing electric or magnetic gradients. On the basis of a ramp like structure, the binding of the analyte to a ...

2701 - 2710 of 3390 First | < Previous | Next > | Last