Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

On the Geometric Nonlinearity Effects of Polymeric Plates on Structural Performance - new

K. Vakkund[1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Polymer sheets are widely used for glazing and roofing structural applications. The primary design requirements of these polymeric sheets are to resist uniformly distributed wind loading. Conventional building materials such as steel and glass plates are relative stiffer compared to polymeric sheets. The deflection of high stiff plates is about an order lower than polymeric plates. Polymeric ...

Iberian COMSOL Multiphysics Conference

The Organizing Committee of the Iberian COMSOL Multiphysics Conference 2014

In the conference we bring together a community that is scientifically diverse in an event about the use of COMSOL Multiphysics. Oral and poster presentations highlight achievements in multiphysics modeling and simulations using COMSOL.

A Comparison of Mass Reduction Methods for Silicon-on-Oxide (SOI)-based Micromirrors

H. J. Hall [1], L. A. Starman [1],
[1] Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA

Beam steering and adaptive optics micromirror applications commonly demand optically flat surfaces with minimal mass. When reflective coatings (usually metallic Au or Al) are applied to micromirror surfaces in order to meet optical reflectivity requirements the resulting film stress (usually tensile) can be substantial. The mass of the mirror can be a limiting factor in the dynamic performance. ...

Design and Implementation of a Small UAV’s Pod Equipped with a Solid Oxide Fuel Cell

N. Briguglio [1], G. Giacoppo [1], O. Barbera [1], F. Cipiti [1], M. Ferraro [1], G. Brunaccini [1], L. Di Giovanni [1], N. Randazzo [1], E. Antonucci [1]
[1] CNR ITAE, Italy

Unmanned aerial vehicles (UAVs) have recently received great interest due to their great potential in both military and civil applications [1-4]. Testing and construction of UAVs is expensive and time consuming and a simulation approach can help to reduce cost for both design and tests. In this paper, the authors have used COMSOL Multiphysics software to design a UAV’s pod equipped with a Solid ...

Marine Vibrator Bubble Source Simulation and Testing

A. K. Morozov [1],
[1] Teledyne Marine Systems, North Falmouth, MA, USA

Marine Vibrators are a coherent type of sound source, which can be quieter and less harmful for marine habitants than traditional air-gun technology. Such source gives clearer, more precise and higher resolution imaging of the bottom properties due to the coherent signal and streamer array processing. Teledyne Marine Systems is developing a coherent seismic marine sound source technology ...

Simulation of an Electromagnetic Sheet Shearing System

Y. Huang [1], X. Li [1], Q. Xiong [1], Z. Lai [1], Q. Cao [1], L. Li [1],
[1] Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei, China

Electromagnetic shearing (EMS) is a high speed sheet metal shearing system where the workpiece is fractured under a pulsed electromagnetic force. It can be regarded as an extension of electromagnetic forming[1-2]. The basic shearing principle is that a huge repulsive electromagnetic force is generated in the driver plate under the action of pulsed magnetic field and induced eddy current, and ...

Si-Infiltrated SiC Lattices in Elevated Temperatures: A Thermo-Mechanical Analysis

E. Rezaei [1],
[1] EPFL, Lugano, Switzerland

Si-infiltrated SiC porous composites exist in different forms composed of cores of cellular ceramic and skin plates of ceramic matrix composites. Due to high thermal conductivity, low coefficient of thermal expansion, high elastic modulus and high strength, the final product can be a promising candidate for applications in temperatures up to 1500 K such heat exchangers, recuperators and solar ...

Low Temperature Microwave Treatment of Sphere Materials

Huangcheng Zhu [1], Youqi Deng [1], Qian Meng [1], Quansheng Wang [1]
[1] Sichuan University, Chengdu, China

Microwave heating has many advantages over the traditional heating method, such as needing shorter time, saving more energy, and being easier to control. But there still are some problems.(1) Themal runaway still exists because the reflection and absorption of microwave by the reactants change nonlinearly with time during the reaction. It may destroy the microwave generator and burn the ...

Drug Distribution in the Human Eye

L. Murtomäki[1], T. Kainuvaara[1]
[1]University of Helsinki, Helsinki, Finland

Drug therapy of the posterior segment of an eye is very challenging due to the difficult accessibility. Modern drugs often are large molecules, such as peptides, antibodies or oligonucleotides which are administrated, e.g. by intravitreous injections which requires clinical conditions. Computer modeling can be helpful in designing new and less invasive routes of drug administration. COMSOL is ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...