Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using Optical Flow Tracing of MRI Flow Artifacts to Validate CFD Findings

R. H. Lauridsen, S. Ringgaard, and S. Alberg Thrysøe
Aarhus University Hospital
Aarhus, Denmark

The aim of this study is to use tracking of flow artifacts in Magnetic Resonance Imaging of fluids to validate CFD. Phase Contrast MRI will also be used for comparison. The correlation between flow of the fluid and movement of the artifacts is investigated using an aorta flow phantom, which is modeled from a human aorta and printed in thermo plastic. An Optical Flow algorithm is used to ...

Development of Mathematical Model for Determining Sound Reduction Index of Building Elements

J. Ratnieks, A. Jakovics, and J. Klavins
University of Latvia
Riga, Latvia

Although we know the physics inside a media where the sound waves propagate, determination of material\'s or structure\'s sound reduction index is not an easy task. The lack of good engineering solutions proves the point. The only reliable way to calculate the sound reduction index is to carry out an experiment.Therefore, the aim of this study is to develop a mathematical model that can ...

Validation of a Simplified Model to Determine the Long-Term Performance of Borehole Heat Exchanger Fields With Groundwater Advection

S. Lazzari[1], A. Priarone[2], and E. Zanchini[1]
[1]University of Bologna, Department DIENCA, Bologna, Italy
[2]University of Genova, Department DIPTEM, Genova, Italy

Finite element simulations performed through COMSOL Multiphysics are used to study the long-term performance of BHE fields placed in a water-saturated porous soil subjected to groundwater movement. The heat transfer problem is written in a dimensionless form and the long-term time evolution of the mean surface temperature of the BHEs, sketched as cylindrical heat sources subjected to a regular ...

La5Ca9Cu24O41 Layers as 1D Heat Spreaders for Thermal Management Solutions

C. Orfanidou, and J. Giapintzakis
Department of Mechanical and Manufacturing Engineering
University of Cyprus
Nicosia, Cyprus

This paper deals with the design of a viable thermal management solution using La5Ca9Cu24O41 layers for heat channeling. The simulations are carried out with the finite element method using COMSOL Multiphysics Heat Transfer Module. COMSOL 4.2 was used to model and optimize silicon devices. Malfunctioning elements on silicon devices are sometimes converted into hotspots resulting in the ...

Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

R. Tosh, and H. Chen-Mayer
Gaithersburg, MD

Accurate metrology of radiotherapeutic absorbed dose to water requires assessing the radiation induced temperature change. The most direct method for doing this is water calorimetry, for which the established technique involves the use of slender thermistor probes that are sealed within a glass vessel containing high-purity water. The probes and vessel perturb the radiation field, via ...

CFD Analysis of Argon Cell for Pyrochemical Processing

S. Agarwal[1], S. P. Ruhela[1], B. Muralidharan[1], B. P. Reddy[2], B. K. Sharma[1], K. Nagarajan[2], C. A. Babu[3], and K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research
[2]Chemistry Group, Indira Gandhi Centre for Atomic Research
[3]HBNI & CDG, Indira Gandhi Centre for Atomic Research

An inactive Demonstration facility for the integrated pyroprocess, named High temperature Electrorefining (HTER) facility is in developing stage. This facility is equipped with several types of pyroprocess equipment such as electro-refiner, salt and cadmium distillation equipment, scraping equipment and tilting equipment inside an Argon cell. To operate the argon cell safely, all generated ...

Design and Analysis of Implantable Nanotube Based Sensor for Continuous Blood Pressure Monitoring

M. Silambarasan, T. Prem Kumar, M. Alagappan, and G. Anju
PSG College of Technology
Tamil Nadu, India

The present work aims to develop a blood pressure sensor using MEMS/NEMS technology. A normal blood pressure detector is used externally, but this work mainly aims for designing an implantable nanotube based sensor for continuous monitoring of blood pressure. The use of COMSOL Multiphysics 4.1 acts as a good platform to develop a nano tube based sensor design by using the MEMS module. The ...

Investigation of the Effect of Spinal Defects on Spondylolysis and Stress Fracture of Vertebral Bodies

M.S. Yeoman[1], C. Quah[2], A. Cizinauskas[1], K. Cooper[1], D. McNally[5], B. Boszczyk[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]The Centre for Spinal Studies and Surgery, Queen’s Medical Centre, Nottingham, United Kingdom
[5]Bioengineering Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, United Kingdom

Spondylolysis (SL) is a defect of the spinal vertebra, and is typically caused by stress fracture of the pars interarticularis bone of the vertebral arch. It is especially common in adolescents who over train in sporting activities. Spina bifida occulta (SBO) is a malformation of the spine where the protruding vertebral bodies are not fully formed. In this study we demonstrate the predisposition ...

SWRO (Desalination) Biofilm Remediation Technology Utilizing Centrifugal Micro-Fluids

E.M. Glenn[1]
[1]University of California, Irvine, CA, USA

Water-and-energy supply is a global issue of paramount importance. The demand for safe potable water is quickly exceeding the limits of natural regional water resources. Like oil, water is a finite resource; unlike oil, however, water has no alternatives. Water, energy and their environmentally sound solutions are interrelated; and of all the present-day environmental problems, those related to ...

Modeling Pit Lake Flooding After Mine Closure

S. Jordana[1], A. Nardi[1]
[1]Amphos 21, Barcelona, Spain

Most of mining works, either on the surface or in the underground, demand continuous groundwater pumping in order to operate under dry conditions. When the mining activity stops, dewatering also stops and mining facilities begin to flood, quite quickly at the beginning but becoming slower as the water level in the pit lake rises. The rise of the surface of the lake decelerates due to the bigger ...

3171 - 3180 of 3390 First | < Previous | Next > | Last