Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A 3D Thermal Model for Lunar Surface Using COMSOL Multiphysics® Software: Validation and Results

K. Durga Prasad [1], S.V.S. Murty [1], V. K. Rai [1],
[1] Planetary Sciences Division, Physical Research Laboratory, Ahmedabad, Gujarat, India

A comprehensive three dimensional finite element thermal model has been developed using COMSOL Multiphysics® software to understand the thermo-physical behaviour of the uppermost regolith layer of the moon. The model can simulate variable layers, layer thickness and dimensions and can account for complex geometry, different size, irregular meshing, parametric based variation in physics and ...

Establishing Tolerances and Limits of Failure for Sample and Reagent Flow Using COMSOL Multiphysics® Software

S. Kumar [1], D. Dendukuri [1]
[1]Achira Labs, Bangalore, Karnataka.

Microfluidics is the science of manipulating and controlling fluids at the micron scale. Although, fluid flow in standard geometries can be determined easily by analytical methods, a more rigorous computational model is required for custom geometries. Achira’s microfluidics cartridge has a microchannel with intricate curvatures to allow the entrapment of biosensors. The number and dimensions of ...

基于 COMSOL 的 HVPE 法 GaN 单晶生长过程模拟

兰飞飞 [1],
[1] 中国电子科技集团公司第四十六研究所,天津,中国

利用 COMSOL Multiphysics® 软件中流体传热接口、层流接口、化学反应接口对 HVPE 法单晶生长过程进行模拟。建立了基于 HVPE 生长室内部结构的简单二维模型,并进行了标准的网格剖分,通过物理场耦合,并添加了生长过程中所需的生长气氛,研究了 HVPE 法进行 GaN 单晶生长过程中衬底表面厚度分布的变化规律。通过模拟结果发现,衬底表面存在显著的边缘效应,边缘处厚度显著高于衬底表面其它区域。


罗强 [1],
[1] 西安石油大学,西安,中国

电力传送中经常遇到导线周围金属体连续分布的电荷的电场电势分布问题,其中线电荷的电场分布非常典型, 对于实际情况,当导体靠近导线,因物体形状的不同,其表面产生不同的电荷分布。 解决方案 1 实际情况是三维问题,而三维几何体表面电场分布很难推出解析解,分解成二维模型并验证其表面电荷分布,再通过 COMSOL Multiphysics® 建立三维模型进行仿真计算。 2 对于一般的有限元编程繁琐,计算量大,不可视化,在 COMSOL 中可以不用人工编程,通过绘图功能,可以绘出几何体表面电场线图,与解析解进行对比。 模型设计 1 二维模型中无限长导线用细长线代替,无限远处接地用另一个细长线代替,金属圆盘用面域代替,根据不同区域设置网格尺寸,验证其他形状物体二维表面电荷分布; 2 三维模型中无限长导线用细长体域代替,无限远处接地用一定距离面域代替,用球型代替物体 ...

Modeling the Behavior of Single Particle during Drying Process

S. Bellur, B. Agasanpura, and C. Coronella
Chemical and Metallurgical Engineering Department, University of Nevada, Reno, Nevada, USA

The aim of the present work is the formulation of a computational model describing transport phenomena in transient biosolids drying. COMSOL Multiphysics was used to perform the simulations, with two spatial dimensions. After a time step of 0.1 s, we found that the solid reached thermal equilibrium with the surrounding gas, which is consistent with empirical correlations.

Transient Conjugate Optical-thermal Fields in Thin Films Irradiated by Moving Sources: A Comparison between Back and Front Treatment

N. Bianco[1], O. Manca[2], and D. Ricci[2]
[1]Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università degli Studi di Napoli, Aversa (CE), Italy

A two dimensional instationary analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure on a glass substrate by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. COMSOL Multiphysics 3.4 code has been adopted to solve the combined thermal and electromagnetic problem in order to compare the ...

High Temperature Process Simulation

O. Geoffroy, and H. Rouch
INOPRO, Villard de Lans, France

The crystal growth industry uses high temperature processes. To improve production efficiency, a good knowledge of thermal effects is necessary. We show in this article a methodology to get reliable data by mixing simplified models, sensitivity studies and parameters adjustments. The precision is improved by comparison with experimental measurements.

Numerical and Experimental Study of Flow, Heat Transfer and Concentration in a Scaled-up Fuel Cell Anode Channel Model

J. C. Torchia-Nüñez[1], and J.G. Cervantes-de-Gortari[1]

[1]Department of Thermal Engineering, National University of Mexico, UNAM, Mexico City, Mexico

Flow, concentration and temperature fields are studied with numerical and experimental methods inside a scaled-up fuel cell anode channel model. The low aspect ratio channel has a porous medium as the inferior wall where a mixing of different pH solutions occurs. Chromatic change of phenolphthalein is used to visualize concentration field and Particle Image Velocimetry (PIV) is used to visualize ...

Optimization of Dynamic Embedded, Water Based Surface Heat (and Cold) Emitting System for Buildings

S. Thomas[1], P.Y. Franck[1], and P. André[1]
[1]Department of Sciences and Environmental Management, University of Liège, Arlon, Belgium

This paper presents the heat flow model and the experimental test bench developed to optimize a new kind of heating floor. In the first part of the text is described the new kind of high reactivity emitting device for building heating and cooling. The second part illustrates the numerical model developed to evaluate the device efficiency. Finally experimental test bench implementation and ...

Multiphysics Modelling of a Micro Valve

F. Bircher[1] and P. Marmet[1]

[1]Institute of Print Technology, Bern University of Applied Sciences, Burgdorf, Switzerland

Electromagnetic micro valves are currently developed empirically or the different physics are treated separately. To accelerate the development-process and for a better understanding of the overall system, a multiphysics simulation is built up. This simulation considers the electromagnetics, the electronics (including the control of the process), the mechanics and the fluidics with respect to ...