Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

An Approach to Modeling Vacuum Desorption - new

C. F. Gomez[1], R. Schunk[1], R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The objective of this simulation effort is to develop a mathematical model of vacuum desorption on a POC (Proof of Concept) canister loaded with Zeolite 13X/5A . This canister contains a pelletized adsorption bed which is used to adsorb H2O and CO2. Once this bed is fully saturated with an equilibrium loading, desorption is then accomplished by reducing the pressure to near vacuum. This type of ...

Design and Characterization of MEMS Based Accelerometers for Various Applications - new

R. Singh[1], M. Singh[2]
[1]National Institute of Technology Karnataka, Surathkal, Karnataka, India
[2]Indian Institute of Technology Delhi, New Delhi, Delhi, India

Today, MEMS based accelerometers are used in a variety of applications. To name a few, they are used in safety systems in automobiles, it has added a new dimension to miniaturization of devices, it has replaced traditional piezoelectric accelerometers, which were big and difficult to use. For its various applications, differing bandwidth (operating frequency range) and amplitude of vibration are ...

Numerical Investigation of Heat Transfer in an Attic Duct Model

H. Liu [1], A. Fallahi [1], J. Kosny [1]
[1] Fraunhofer Center for Sustainable Energy Systems, Boston, MA, USA

Air ducts play an important role in the energy efficiency of residential homes across the country. While transporting the conditioned air from the HVAC system to the conditioned space, 30-40% of the thermal energy can be lost due to conduction [1]. The loss of thermal energy can reduce the HVAC efficiency to up to 18% [2]. Air ducts can be responsible for up to 12% of the air leakage or 30% of ...

Helium Two-Phase Flow in a Thermosiphon Open Loop

Bertrand Baudouy
Head of the Cryogenics R&D Group, CEA Saclay, France

Outline of presentation: Missions of SACM (Accelerator, Cryogenics and Magnetism Division) Context : The Large Hadron collider at CERN, Geneva Cooling large superconducting magnet Thermosiphon open loops for cooling superconducting magnets Experimental facility and ranges of the study COMSOL Multiphysics Modeling Results with COMSOL Multiphysics Comparison with experimental ...

Fluid Flow Simulation of Preconcentration Membranes Using Finite Elements Tools

R. Inglés[1], J. Pallares[2], J.L. Ramirez[1], and E. Llobet[1]

[1]Dept. of Electronic, Electrical and Automatic Control Engineering, Universitat Rovira i Virgili, Tarragona, Spain
[2]Department of Mechanical Engineering School of Chemical
Engineering Universitat Rovira i Virgili, Tarragona, Spain

We use finite elements simulations in order to study the fluid flow behavior in a chamber of a preconcentrator. We realized that most part of the fluid does not affect our preconcentrator because it is going out the chamber at high distance above it and parallel to the preconcentrator. So, we are wasting most part of our fluid and we need a lot of time to have a good concentrator factor. We ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

Finite Element Modeling a Redox-Enzyme-Based Electrochemical Biosensor

Y. Huang[1], and A. Mason[1]
[1]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This paper describes the modeling of an electrochemical biosensor embedded in a microfluidic channel to determine the concentration of a target biomolecule. The total amount of analyte in the sample can be calculated by integrating the analyte concentration over the duration of the peak current. The biosensor is constructed by immobilizing redox-enzyme on an interdigitated array (IDA) electrode ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Parameter Optimization for Finite-Element Method (FEM) based modeling of singlet oxygen during PDT

T. Zhu, and K. Wang
Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Photodynamic therapy(PDT) is a new cancer treatment modality using the photochemical reaction of a photosensitizing drug, light, and oxygen. The objective of this project is to determine the photochemical parameters necessary for singlet oxygen modeling during PDT using parameters obtained from a microscopic model.   FEM calculation in COMSOL Multiphysics was used to determine the model ...

A Mean Field Approach to Many-particles Effects in Dielectrophoresis

O. Nicotra, and A. La Magna
CNR-IMM Sezione di Catania, Catania, Italy

One of the major applications for dielectrophoresis is the selective trapping and fractionation in lab-on-a-chip devices. Nevertheless, many-particle effects due to high concentrations of biological material around electrodes can cause a rapid decrease of trapping efficiency in dielectrophoretic devices. In this contribution we present a new approach based on a drift-diffusion dynamics to study ...

3201 - 3210 of 3695 First | < Previous | Next > | Last