Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Noise Produced by Offshore Wind Turbines with Different Foundations and Effects on the Marine Environment - new

B. Marmo [1], I. Roberts [1]
[1]Xi Engineering Consultants, Edinburgh, Scotland, UK

Vibration produced by offshore wind turbines during their normal operation transmits through the tower into the foundation where it interacts with the surrounding water and is released as noise. The noise produced by offshore wind turbines can be detected by fish and marine mammals and may lead to alteration of their behavior. Given that noise is emitted at the interface between the foundation ...

DNA Interactions in Crowded Nanopores - new

K. Misiunas[1], N. Laohakunakorn[1], S. Ghosal[2], O. Otto[1], U. F. Keyser[1]
[1]University of Cambridge, Cambridge, UK
[2]Northwestern University, Evanston, IL, USA

The motion of DNA in crowded environments is a common theme in physics and biology. Examples include gel electrophoresis and the self-interaction of DNA within cells and viral capsids. Here we study the interaction of multiple DNA molecules within a nanopore by tethering the DNA to a bead held in a laser optical trap to produce a "molecular tug-of-war". We measure this tether force as a function ...

Carbon Nanotube Based Mass Sensor Using Atomic Resolution Nanomechanical Resonators

M. Roshini[1], G .B. Priyanga[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

The objective of this paper is to design and simulate Carbon Nano-Tube (CNT) based mass sensor that determines extremely low measures of molecules using COMSOL Multiphysics® software. The ultimate goal of this nanomechanical resonator sensor is that it allows detection at single molecular level. The change in the mass from the resonator can cause a shift in the resonant frequency. The ...

Simulating the Flow of Native Silk Feedstocks In Vivo

J. Sparkes [1],
[1] Natural Materials Group, Dept of Materials Science and Engineering, The University of Sheffield, Sheffield, UK

The ability to artificially produce silk fibers has great commercial, industrial and scientific implications. Much has been made of their remarkable mechanical properties but few have considered how they are imparted on the initially liquid silk feedstock.1 I am exploring how silk duct geometry affects the fibers produced as by understanding the flow conditions within the model, and comparing ...

Highly Optimised Double Gimbal-Based Accelerometers with Piezoelectric Sensing Mechanism

K. Govardhan [1], T. Pedanekar [1], P. Vashishtha [1],
[1] VIT University, Vellore, Tamil Nadu, India

A comparative study is done using optimized single axis accelerometer and dual axis and double gimbal accelerometers are designed with different cantilever beam types i.e. perforated, non perforated, spring type and cross spring type. The models are simulated to find the most sensitive model.

A Strategy to Simulate Radio Frequency Heating Under Mixing Conditions

S. Wang [1], L. Chen [1],
[1] Northwest A&F University, Yangling, Shaanxi, China

A computer simulation model was developed using finite element-based commercial software, COMSOL Multiphysics®, to simulate temperature distributions in wheat samples packed in a rectangular plastic container and treated in a 6 kW, 27.12 MHz RF system with and without mixing conditions. The developed model was then experimentally validated by temperature distributions of three layers without ...

Hydrodynamics of Viscoelastic Jets in Extensional Flow

S. Kulkarni [1], V. Juvekar [1],
[1] Indian Institute of Technology Bombay, Mumbai, India

The extensional flow of viscoelastic flow is encountered during fibre spinning processes. A variety of polymers such as polyesters, polyacrylonitrile, rayon, acrylic, spandex etc are manufactured using this process. In the spinning process, polymer melt/ solution is extruded in the form of jet, through a porous plate called spinneret, into a bath having a suitable environment which allows ...

Effect of Pretreatments on Throwing Power of Sacrificial Metallic Coatings

J. S. Lee [1],
[1] Naval Research Laboratory, Stennis Space Center, MS, USA

Sacrificial metallic coatings (e.g. Mg-Rich Primer [MgRP]) have been evaluated for protection of aircraft aluminum alloy AA2024-T351 in marine immersion and atmospheric conditions. MgRP is designed to create a galvanic couple between the Al substratum and the Mg pigment in the primer. The Mg acts as a sacrificial anode to the more noble underlying substratum and protects local and remote ...

FEM Analysis and Optimization of Electro-Stimulating Implants for Bone Regeneration and Prevention of Bacterial Infection

T. Bender [1], J. Ziebart [2], T. J. Dauben [1], B. Kreikemeyer [3], R. Bader [2]
[1] Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany; Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
[2] Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
[3] Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany

The aim of this study is to investigate the influence of electro-magnetic stimulation on bone regeneration and the effect on bacterial infection. Electro-magnetic stimulation is a promising technique and a powerful tool for the enhancement of bone regeneration. To optimize the amplitude of the electric field and also the magnetic flux density norm a finite element analysis (FEM) simulation was ...

Modeling of Microstructures in Dissimilar Copper/Stainless Steel Electron Beam Welds

I.Tomashchuk, P. Sallaman, and J.-M. Jouvard
Institut Carnot de Bourgogne, Université de Bourgogne, Le Creusot, France

In the case of electron beam welding of copper with stainless steel, two principal cases of welding pool morphology are possible: a droplet-like microstructure where the electron beam deviates to the copper side due to the thermoelectric effect, so the volume of molten copper is much bigger than steel, and an emulsion-like microstructure, volumes of melted materials are closely equal. ...