Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Electro-Stimulating Implants for Bone Regeneration: Parameter Analysis on Design and Implant Position

Y. Su[1], R. Souffrant[1], D. Klüß[1], R. Bader[1], M. Ellenrieder[1], and H. Ewald[2]
[1]Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Department of General Electrical Engineering, University of Rostock, Rostock, Germany

A common clinical treatment is the application of alternating electromagnetic fields using a screw implant to the weak bone tissue within the femoral head, which speed up the bone regeneration in case of avascular necrosis of the femoral head . In our present work the bipolar induction screw system as the depicted ASNIS S-Series screw with integrated coil and electrodes were investigated. ...

Drag Reduction due to Microbubbles in Textured Hydrophobic Surface

S. Takahashi
Tokyo Metropolitan University
Tokyo
Japan

This paper is in Japanese.

Simulation and Design of a Microfluidic Respirometer for Semi-Continuous Amperometric Short Time Biochemical Oxygen Demand (BODST) Analysis

F.J. del Campo[1], A. Torrents[1], J. Mas[2], F.X. Muñoz[1]
[1]Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
[2]Departement de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to parameterize and optimize aspects such as height and length of the channels, materials and thickness, flow and oxygen ...

Multiphysics Simulations in the Ultrasonic Industry

P.A. Colombo[1]
[1]DepQuest, Dalmine, Italy

This work focuses on the application of multiphysics finite element simulations in the manufacturing and application of high power ultrasonic machines. Industries providing big power ultrasonic solutions as in cleaning, welding, sonochemistry and cutting fields, already apply the finite element simulation approach, in the structural mechanics flavor, in the design and optimization of ultrasonic ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Magnetotelluric Response Distortion Over Rugged Topography

D. Rizzello[1], P. Canepa[1], E. Armadillo[1]
[1]DISTAV - University of Genova, Genova, Italy

Topographic effects on magnetotelluric responses may be severe on rugged terrains. Finite elements simulation is a valuable tool to quantify this effect, due to its capability to match real morphologies. To do the estimate of the distortion, the AC/DC Module of COMSOL has been employed, using a model of homogeneous resistivity on which a DEM (Digital Elevation Model) profile of the Deep Freeze ...

The Application of Low Temperature Plasma in COMSOL Multiphysics

Cheng-Che (Jerry) Hsu[1]
[1]Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

Multiphysics simulation was used in this work to model inductively coupled plasmas (ICPs). Developing a model of an ICP is challenging due to the complex relationship between the applied electric field and mixture of chemical species that develops. A preliminary model was developed and validated for an Ar/O2 plasma including neutral, ionic, and all major reactions. The validated model was used ...

Optimizing Fuel Cell Design with COMSOL Multiphysics

Chin-Hsien Cheng[1]
[1]Renewable Energy RD Center, Chung-Hsin Electric & Machinery, Taiwan

Proton exchange membrane fuel cells (PEMFCs) were investigated using COMSOL Multiphysics with the AC/DC Module and Chemical Engineering Module. Simulation may be used to increase the performance while decreasing the cost of the catalyst later (CL). Experimental validation of single and multi-layer CL was performed for varied PBI electrolyte content. The validated model was used to investigate ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Analysis of Heat Transfer in a Complex Three Dimensional Structure Fabricated by Additive Manufacturing - new

C. Settle[1], K. Hoshino[1]
[1]Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA

The goal of this study was to create a three dimensionally designed biomedical device with multiple functionalities and analyze its simulated heat transfer. The device would be fabricated through additive manufacturing; specifically electron beam melting (EBM). EBM has a feature size constraint of 1 mm (acceptable for this design) and is only capable of manufacturing titanium alloys [2]; a ...