Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...

Using a Level-Set Model to Estimate Dwell Time in a Vacuum Dewatering Process for Paper

K. Rezk[1]
[1]Department of Energy, Environmental and Building Technology, Karlstad University, Kronoparken, Sweden

Water removal during paper manufacturing is an intensive energy process. The dewatering process generally consists of four stages in which the first three stages, water is removed mechanically through vacuum pulses and pressing.The fourth stage involve thermal drying. The vacuum dewatering process has been considered in this work. A laminar level-set method has been applied in order to capture ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. ...

Use of COMSOL Multiphysics to Simulate RF Heating of Passive Conductive Implants in MRI Scanners

Dr. Leewood joined MED Institute (a Cook Medical Company) in January 2004. He came to MED from AC Engineering, Inc.(ACE) which he founded in 1986. ACE provided consulting services in the field of Computer Aided Engineering with specialty in solving a wide range of industrial problems requiring expert use of nonlinear FEA, in particular the ABAQUS® program. Dr. Leewood was brought into MED to ...

Weak Formulations for Calculating Spin Wave Dispersion Relation in Magnonic Crystals

M. Mruczkiewicz[1]
[1]Adam Mickiewicz University, Poznan, Poland

We study the spin wave excitation (coherent precession of magnetic moments) in periodically arranged magnetic stripes, i.e., in one-dimensional magnonic crystal (MC). Two approaches have been implemented. We have defined a structure that dispersion relation can be obtained using both approaches and compared them. In general, the approach I has to be used for MCs where the exchange interactions ...

Optimizing Electrode Surface Area by COMSOL Multiphysics®

B K SRIHARI[1], Dr K Nagarajan[1], Dr B Prabhakar Reddy[1], P VENKATESH[1]
[1]Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

In the design of electrorefiner, Working electrode and Counter electrode surface areas are very important. The main aim of this study is to understand the effect of the ratio of Anode to cathode Surface areas in an electrorefining cell. Application of this model to design electrorefiner for metallic spent nuclear fuel is discussed with respect to Uranium recovery. Shaping of real anode surface ...

Combustion Study of DDGS Char from Steam-O2 Blown CFB Gasifier and Charcoal Using Thermogravimetric Analysis and COMSOL Multiphysics®

X. Meng[1], W. de Jong[1], A.H.M. Verkooijjen[1]
[1]TU Delft, Delft, The Netherlands

To obtain reliable kinetic data for the modeling of Dried Distiller’s grains with Soluble (DDGS) gasification using a 100 kWth steam-O2 blown circulating fluidized bed (CFB) gasifier, the combustion behavior of partially gasified residual DDGS char and pure charcoal as a comparison has been investigated using thermogravimetric analysis (TGA). Two conversion models, volume reaction model (VRM) ...

Annealing Furnaces Modelisation for Photovoltaïc Applications

J. Givernaud[1]
[1]EMIX, St Maurice La Souterraine, France

The optimisation of dimensions, materials choice of heaters in annealing furnaces are done with COMSOL Multiphysics® in 2D-axisymetry. Heat losses sources are identified and corrective actions can be taken in function of simulation results. A power saving of more than 50% is achieved thanks to simulations.

Investigation on an Encircling Pulsed Eddy Current Probe Performance Using COMSOL Multiphysics®

S. Majidnia[1], R. Nilavalan[1], J. Rudlin[2]
[1]Brunel University, London, United Kingdom
[2]TWI ltd, Cambridge, United Kingdom

Conventional eddy current techniques have been used to a great extent for detection of surface breaking defects in conductive materials. However, detection of sub-surface defects is limited due to the single frequency and skin effect phenomena. Pulsed Eddy Current (PEC) techniques overcome these limitations. This work involves modelling of an encircling coil around a steel pipe with and without ...