See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The paper illustrates the use of COMSOL (via the “Coefficient-Form PDE” option) for obtaining the relativistic quantum mechanics wave function Ψm(x,y,z,t), m=1,4 as a solution to the time dependent Dirac equations. Once having Ψm(x,y,z,t), it can be used to compute the probability ... Read More
While electrostatic actuators feature prominently among the most widely employed classes of actuators for microelectromechanical systems (MEMS), conventional embodiments of these devices (e.g., parallel plate structures) notoriously suffer from several significant drawbacks. Most ... Read More
Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is ... Read More
Laser-based powder bed fusion (LPBF) is a promising additive manufacturing technology, where metallic parts are produced in a layer-wise manner. At each step, a rapid-moving laser irradiates and subsequently melts predefined zones of a relatively thin layer of fine spherical metal ... Read More
Wear is a complex phenomenon relevant to many problems involving frictional contact, such as mechanical brakes, seals, metal forming, and orthopedic implants. The rate of wear depends on the properties of the contacting materials and operating conditions. One widely used model of wear is ... Read More
Using a 1-D model of polymer displacement, we analyze the exergy (maximum attainable work) balance of viscosified water, e.g. with Arabic gum. The 1-D model shows the principle how such an analysis can be done. A comparison as to the displacement efficiency is made between three ... Read More
Recently, acoustic black holes (ABH), a new passive structural modification approach to control vibration and noise from mechanical structures have been developed and studied. This preliminary study presents the work on the influence of acoustical black holes on the vibration and sound ... Read More
The XENON Dark Matter Experiment utilizes ultra-pure xenon (Xe) as a target for particle interaction in the effort to detect dark matter particles. To measure the purity of Xe, a gas purity monitor (GPM) is being developed which drifts electrons through Xe gas to detect impurities that ... Read More
Introduction Use of simulation software for solving realistic engineering problems has grown significantly in recent years due to the availability of less expensive but more powerful computers and development of user-friendly yet robust codes. From an educational perspective, students in ... Read More
The temperature distributions inside two packs (in-line and staggered) made of large cylindrical lithium iron phosphate cells (of 18 Ah nominal capacity) are analysed in this paper during a 90 A constant discharge current. The analysis of the battery packs temperature distributions is ... Read More
