Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Nonuniform Magnetisation of a Ferrite Loaded Waveguide

H. V. Dixit [1], A. R. Jadhav [2], Y. M. Jain [3], A. N. Cheeran [1], V. Gupta [2], P. K. Sharma [3],
[1] Veermata Jijabai Technological Institute, Mumbai, Maharashtra, India
[2] Vidyavardhini's College of Engineering and Technology, Vasai, Maharashtra, India
[3] Institute for Plasma Research, Gandhinagar, Gujarat, India

The modelling of a ferrite material is conventionally carried out using the Polder permeability tensor which assumes that the ferrite is saturated by a uniform magnetic field. This assumption is often inaccurate due to the constraints imposed by boundary conditions which renders the magnetic field non-uniform. This work proposes to overcome this by determining the magnetic field through a ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

Multi-Objective Optimization of a Strip-Fin Microchannel Heatsink: Integrating COMSOL Multiphysics with modeFRONTIER

A. Clarich, R. Russo, and N. Fateh
Esteco North America, Miami, FL, USA

For this work the multi-objective design environment modeFRONTIER was integrated with COMSOL, bringing the advantages of multi-objective optimization to multiphysics simulations. Practically any commercial analysis tool (such as COMSOL) or in-house code can be integrated within modeFRONTIER’s framework. In the case of the direct approach, modeFRONTIER determines the configurations to be ...

Sequential Simulation in COMSOL using Differential Equations to Perform Digital Switching

L. Lam, and R. Darling
University of Washington
Seattle, WA

Many physical systems contain sequential modes of operation. The sequence is one-way and switching between modes is dependent upon specific internal parameters of the system itself. While COMSOL provides the flexibility to perform time-domain simulation and time-based modifications of boundary conditions, simulating sequential systems based upon internal physical variables in COMSOL can be a ...

Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration

A. Giusti[1], A. Andreini[1], B. Facchini[1], F. Turrini[2], Ignazio Vitale[2]
[1]Department of Energy Engineering, University of Florence, Florence, Italy
[2]Avio, Turin, Italy

In this work a thermoacoustic analysis of a tubular combustor with an advanced lean injection system is presented. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame-Transfer-Function, FTF) in the flame region. The effect of the mean flow is ...

Simulation of GMR in Granular C/Co Nanoparticles in Agarose - new

P. Hainke[1], D. Kappe[1], A. Hütten[1]
[1]Universität Bielefeld, Bielefeld, Germany

As the importance of nanoparticles is growing more and more, controlling and understanding the properties of nanoparticles became a focus of research. In this field Meyer at al. [1] are researching the GMR effect in granular gels to develop magnetoresistive sensors. The GMR in granular gels is simulated to investigate the physical processes in those systems. As soon as the models coincide with ...


韩建宁 [1], 罗世通 [1],
[1] 中北大学,太原,中国

基于声学透镜的声学聚焦技术已经在医学检测及医学治疗中有着广泛应用,特别是在 HIFU 技术中有着重要的地位。虽然近几年声学聚焦技术已经有着很多的成果,但是由于“衍射极限”的问题,聚焦区域有一定的限制。声学超材料技术是当前物理领域的热点,该技术的相关成果和优势已经渗透到多个学科的研究中。本文为了更好地抓住学科交叉的技术优势,发挥声学超材料在声学聚焦技术中的优势,使用 COMSOL Multiphysics® 进行了水下聚焦超声技术研究,得到了较好的实验效果。这些研究对推动我国的声学透镜技术研究有较大的帮助,对基于 COMSOL 的有限元分析声学透镜技术有较大的借鉴。

Rapid Control Prototyping for the Production of Functionally Graded Materials with Tailored Microstructural Properties Utilizing Comsol Multiphysics

J. Clobes[1,2], H.-J. Watermeier[2], M. Alsmann[2], H. H. Becker[2], and K. Steinhoff[1]
[1]University of Kassel - Chair of Metal Forming Technology, Kassel, Germany
[2]Volkswagen AG, Kassel, Germany

Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process chain for combined heating, metal forming, and cooling processes. A simulation based rapid control ...

Cloud Computations for Acoustics with Coupled Physics - new

A. Daneryd[1], D. Ericsson[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]COMSOL AB, Stockholm, Sweden

For certain classes of scientific and technical computations the cloud may offer easily accessible, scalable, and affordable gigantic computing power. A power that for these classes may lead to a step change in model and analysis complexity compared to what is feasible with dedicated clusters and similar networked solutions. Acoustics with or without interaction with coupled physics fields ...

Linear LS Parameter Estimation of Nonlinear Distribute Finite Element Models

E. Sparacino[1], D. Madeo[1], and C. Mocenni[1]

[1]Dipartimento di Ingegneria dell’Informazione, Università di Siena, Siena, Italy

This work concerns the development of a new direct parameter identification procedure for a class of nonlinear reaction- diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity or reaction term parameters. Using the Finite Element Method we are able to transform the original partial differential equation into a set of ...