Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]
[1]ACOUSTICS@MBD CONSULTANTS, LLC, Westborough, MA, USA

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Including Expert Knowledge in Finite Element Models by Means of Fuzzy Based Parameter Estimation

O. Krol[1], N. Weiss[1], F. Sawo[1], and T. Bernard[1]

[1]Fraunhofer Institute for Information and Data Processing, Karlsruhe, Germany

In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for effects like growth rates often no analytic models are available. However, in many cases experts have ...

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. ...

Irrotational Motion of an Incompressible Fluid Past a Wing Section in an Unbounded Region

J. Russell[1]
[1]Florida Institute of Technology, Melbourne, FL, USA

Developers of numerical models who address the title problem face several hurdles, such as: (1), the need to formulate boundary conditions applicable in an unbounded region; (2), The need to specify conditions suitable to ensure a unique solution in a doubly connected region; and (3), The need to allow the interior boundary to have a sharp edge, such as a cusp. The aim of the work reported ...

Estimativa do Fluxo de Calor em uma Ferramenta de Corte Durante um Processo de Usinagem com o Uso do Software COMSOL Multiphysics® e de Técnicas de Problemas Inversos - new

R. F. Brito[1], S. R. de Carvalho[2], S. M. M. de L. e Silva[1]
[1]Federal University of Itajubá - UNIFEI, Itabira, Minas Gerais, Brasil
[2]Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, Brasil

This work proposes the use of inverse problem techniques in connection with COMSOL to estimate the heat flux and the temperature field on a turning cutting tool in transient regime. The main purpose of the present work is to present the improvements performed in relation to the authors’ previous work to develop the complex geometry of a machining process. Specification function, which is an ...

Parameter Identification in Partial Integro-Differential Equations for Physiologically Structured Populations

S. Moenickes, O. Richter, and K. Schmalstieg
Institut für Geoökologie, Abt. Umweltsystemanalyse, Technische Universität Braunschweig, Germany

Continuous dynamic models, e.g. COMSOL based simulations, play – besides statistical or iterative methods – a mayor role in theoretical ecology; in forecasting and management, but also in systems analysis. Ecological issues generally comprise highly interacting agents and/or unknown side effects. Here we show how combining direct simulation with COMSOL with simple optimization tools ...

Parameter Optimization for FEM Based Modeling of Singlet Oxygen During PDT Using COMSOL

T.C. Zhu, and X. Liang
University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent in photodynamic therapy (PDT). The reaction between 1O2 and tumor cells defines the treatment efficacy. Based on a previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic kinetic equations for the generation of the singlet oxygen, the distance-dependent reacted 1O2 is numerically ...

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to ...

Virtual Experiments: Numerical Computations as a Powerful Tool for Engineers

P. Schmitz[1], A. Cockx[2], S. Geoffroy[3], and J. Gunther[1]
[1]Biochemical Engineering Dpt., Université de Toulouse, Toulouse, France
[2]Chemical Engineering Dpt., Université de Toulouse, Toulouse, France
[3]Mechanical Engineering Dpt., Université de Toulouse, Toulouse, France

An undergraduate course is developed to initiate future engineers to multiphysics numerical simulation by approaching concrete cases in various fields such as: heat transfers, fluid flow, mechanics, chemistry and electrostatics. The so called “Virtual Experiments” course consists of four projects given successively to students. Each project lasts about ten hours. The major notions related to ...