Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Rapid Control Prototyping for the Production of Functionally Graded Materials with Tailored Microstructural Properties Utilizing Comsol Multiphysics

J. Clobes[1,2], H.-J. Watermeier[2], M. Alsmann[2], H. H. Becker[2], and K. Steinhoff[1]
[1]University of Kassel - Chair of Metal Forming Technology, Kassel, Germany
[2]Volkswagen AG, Kassel, Germany

Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process chain for combined heating, metal forming, and cooling processes. A simulation based rapid control ...

Water Quality Model for Brewster Lake

Z. Aljobeh[1], G. Argueta[1]
[1]Valparaiso University, Valparaiso, IN, USA

A numerical model was developed to make spatial and temporal predictions of the water quality for Brewster Lake, located in southwestern Michigan. The model considers the hydrodynamics of the lake, hydrologic conditions, physical, chemical and biochemical processes that take place in the lake, and nutrient loadings from the surrounding watershed. Physical, chemical, and biochemical data ...

Eigen and Coupled Modes on Nanoparticle Aggregate Arrays - new

M. Csete[1], A. Szalai[1], E. Csapó[2], A. Somogyi[1], I. Dékány[2]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2]MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Szeged, Hungary

Novel class of artificial optical antennas are of great interest in biosensing applications of nanoplasmonics due to their unique and tunable spectral properties. Silver colloid spheres covered with L-cysteine were studied experimentally by spectroscopy and TEM and numerically by a COMSOL Multiphysics® simulation. Experimental studies revealed that the Ag NP-Cys core-shell conjugates prefer to ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, ...

Numerical Experiments on Deconvolution Applied to LES in the Modeling of Turbulent Flow

O. Toscanelli[1], V. Colla[1]
[1]Scuola Superiore S. Anna, Pisa, Italy

The Large Eddy Simulation is an important method to simulate turbulent flow. It does not produce a closed system of equations, to achieve this it is necessary to model the not-closed terms. The deconvolution can be used for this purpose. In this study some numerical experiments on this topic are performed with COMSOL Multiphysics®. The main objectives are to find an efficient way to implement ...

Fracture on Circuit Board Internal Layers Due to Thermal Stress on Soldered Pins

F. Figueroa[1], P. Aguirre[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

Circuit board failures are often ignored because they could be impreceptible. This simulation examines how internal layers around a soldered pin via subject to temperature changes during the soldering process are affected, show the forces involved and determine breaking points. A 2D thermo-mechanical model of a soldered pin is achieved in two simulation steps. First, a connecting pin already ...

Optimization of Bending-Type Ultrasonic Transducers with Rotational Symmetry Using COMSOL Multiphysics®

M. Jungwirth[1] and M. Rabl[1]

[1]Wels School of Engineering, Upper Austria University of Applied Sciences, Wels, Austria

Ultrasonic sensors are commonly used for a wide variety of non-contact presence, proximity or distance measuring applications in industry, especially the automotive branch. This paper shows how the radiation properties of bending-type ultrasonic transducers with rotational symmetry depend on shape, dimensions and material parameters. In order to determine their dependencies, the behavior of such ...

On the Formation of a Sticking Layer on the Bearing during Thin–Section Aluminium Extrusion

X. Ma[1], M.B. de Rooij[2], and D.J. Schipper[2]

[1]Materials Innovation Institute, Enschede, The Netherlands
[2]University of Twente, Enschede, The Netherlands

This paper describes the use of COMSOL Multiphysics® to determine the shear layer thickness in thin–section aluminum extrusion, based on the minimum work criterion. The studied two aluminum alloys are AA 6063 and AA 7020. The results show that a continuous shear layer featuring shear localization due to localized thermal softening is not possible to form under typical thin&ndash ...

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...