Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling and Simulation of High Sensitivity CMOS Pressure Sensor Using Free Boundary Circular Diaphragm Embedded on Ring Channel Shaped MOSFET - new

S. Joy[1], T. Tom[1]
[1]Rajagiri School of Engineering and Technology, Kochi, Kerala, India

Sensors have diverse applications ranging from the medical field to space exploration. They convert physical parameters such as temperature, pressure, humidity etc. into an electrical output. The discovery of piezoresistivity property of silicon and germanium led to miniaturization of pressure sensors. Improvement in the sensitivity is the major factor to be considered while designing pressure ...

Multiphysics Applications for Sustainable Engineering and Industrial Processes

S. Savarese [1], L. Kremer [1], C. Sanjeu [1]
[1] Armelio, Les Ulis, France

While addressing the pressing need for better, more sustainable engineering and production improvements, Armélio has identified that easy-to-use, customized, multiphysics applications would fulfill customer requirements. Hence, we now design and deliver COMSOL Multiphysics® apps bringing multiphysics simulation into research labs and production plants. Applications range from heat transfer ...

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of ...

Numerically Closing the Loop of the Adaptive Optics Sensor: the Validation of the COMSOL Multiphysics® Simulation - new

C. Del Vecchio[1], R. Briguglio[1], A. Riccardi[1]
[1]National Institute for Astrophysics, Arcetri Astrophysical Observatory, Florence, Italy

As any other modelling of a physical behavior, the numerical simulation of the mechanical response of an adaptive secondary mirror requires that the results match the experimental data. Such an agreement was recently demonstrated for the local mirror stiffness of the LBT and VLT Deformable Mirrors; a reliable modeling is a good tool for the extrapolation of the missing optical data (spider ...

Modeling of Anisotropic Suede-like Material During the Thermoforming Process

G.Lelli[1], M. Pinsagli[1] , and E. di Maio[2]
[1]Alcantara S.p.A. (Application Development Center), Nera Montoro, Italy
[2]University of Naples "Federico II" (Department of Materials and Production Engineering), Naples, Italy

Physical and mechanical studies of Alcantara® have shown very pronounced anisotropic nonlinear features. Using constitutive equations borrowed from the modelling of biological tissues like tendons and/or arteries under the form of hyperelastic free-energy functions, a good representation of such mechanical features can be obtained. In particular, a combination between the optimization module ...

Elastoplastic Deformation in a Wedge-Shaped Plate Caused by a Subducting Seamount

M. Ding[1], J. Lin[2]
[1]MIT/WHOI Joint Program in Oceanography, Cambridge, MA, USA
[2]Woods Hole Oceanographic Institution, Woods Hole, MA, USA

We used COMSOL Multiphysics 4.3 to simulate the 2D elastoplastic deformation and plastic strain in a wedge-shaped plate above a subducting interface. The modeling results reveal that a pair of conjugate normal faults would first appear in the thinner part of the plate. Subsequently, a second pair of conjugate thrust faults would form in the thicker part of the plate. The duration of the seamount ...

COMSOL Multiphysics® Software Activities Within the Research Reactors Division of Oak Ridge National Laboratory

J. D. Freels [1], P. K. Jain [1], C. J. Hurt [2], F. G. Curtis [1], M. W. Crowell [1], E. L. Popov [1],
[1] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2] University of Tennessee, Knoxville, TN, USA

INTRODUCTION Our group at ORNL started using COMSOL Multiphysics® software shortly after version 3.0 was released in the Spring of 2004. After 11 years and several releases, the application usage has grown along with number of licenses we are responsible for. This paper will broaden the scope and take a look at our past and present applications, and evaluate where we are headed with COMSOL ...

Multiphysics Analysis of a 130 GHz Klystron

A. Leggieri [1], D. Passi [1], R. Citroni [1], G. Saggio [1], F. Di Paolo [1]
[1] Dept. of Electronic Engineering, University of Rome “Tor Vergata”, Italy

The multiphysics analysis of a 130 GHz klystron is described in this paper. Critical quantities are exposed to multiple physics effects acting on narrow dimensions modified by power dissipations. The proposed device uses an integrated injection/bunching section described in last COMSOL Conference appointment. In order to stabilize electromagnetic behavior in thermo-mechanical operative ...

Modelling of Lintel-Masonry Interaction Using COMSOL

A. Vermeltfoort, and A. van Schijndel
Eindhoven University of Technology, Netherlands

An attempt was made, as described in this paper, to assign material properties like shear strength and modulus of elasticity randomly. In this way, the behaviour of a masonry wall with a prefabricated concrete lintel was experimentally tested and simulated using COMSOL. The paper confirms the possible use of COMSOL for modelling lintel-masonry interaction, including variation of mechanical ...

Influence of Vickers Indenter Tip Geometry on the Macro-indentation Properties of TiAl Alloys

G. Maizza, and R. Cagliero
Politecnico di Torino
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica
Torino, Italy

In this work the influence of the geometry of the Vickers indenter tip on relevant indentation properties is investigated during instrumented indentation operated in the macro range (i.e. with forces ranging from 2 to 200 N) and carried out in the case of a homogenized (i.e. heat treated) TiAl alloy. The instrumented macro-indentation test is simulated by Comsol Multiphysics using a full 3D ...