Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars - new

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of adherent cells becomes a crucial factor in determining cell-cell and cell-substrate interaction, important for ...

The Simulation of Motion of a Slider upon a Stator Due to Frictional Force Using COMSOL Multiphysics® Software - new

H. B. Nemade[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The Surface Acoustic Wave (SAW) linear motor was studied which is developed utilizing the friction principle for driving. The principle says that, when a slider is placed on the Rayleigh waves generated on a stator, the slider moves in reverse direction of the wave due to friction between the stator and the slider. A LiNbO3 piezoelectric substrate is used as a stator where comb structured Al ...

A COMSOL Multiphysics® Software Analysis of Beam Tube Cooling in the High Flux Isotope Reactor of ORNL

J. D. Freels [1],
[1] Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Previous to the present work, a formal calculation was approved [1,2] to support the operation of the High Flux Isotope Reactor (HFIR) Horizontal Beam-Tube 1 of 4 (HB-1). The present calculation [3,4] repeats the previous work using COMSOL Multiphysics® software and extends the analysis to cover a broader range of coolant flow. In addition, this new calculation expands the analysis much further ...

Finite Element Modeling of an Aluminum Tricycle Frame

B. Chine' [1], A. Rodríguez [1], J. Alberto Ramírez [1],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

As a sustainable urban transport system, the tricycle might represent an adaptive mobility vehicle used to transport people and bulk load. This transport system must warranty the security of its end users, then experimental and modeling works are very useful tools in order to evaluate the mechanical performance of its frame. In this work we develop a finite element model of an aluminum tricycle ...

Experimental Investigations and Numerical Simulation of Electrothermally Actuated Micro-gripper

B. K. S. Kishor[1], T. Ramesh [1],
[1] NIT Trichy, Tiruchirappalli Tamil Nadu, India.

At the micron-level, thermal actuation exerts larger forces compared to the widely-used electrostatic actuation. To obtain large displacements at low voltage the principle of Electro Thermal actuation is used. It works on the principle of selective non-uniform Joule heating which results in thermal expansion due to constraints. The Microgripper presented here is studied and analyzed by carrying ...

Lumped Element Multimode Modeling of Balanced-armature Receiver with COMSOL Multiphysics® Software

Wei Sun [1],
[1] Institute of Acoustics, Tongji University, China

For the lack of higher order modes, lumped element (LE) models currently used may be insufficient to predict the system of balanced-armature receiver (BAR). We develop a LE multimode model for BAR in the frequency domain based on the techniques of mode decomposition, truncation, and selection via COMSOL Multiphysics® software. The validation is made by comparing with both the corresponding ...

Solving the Inverse Problem of Resonant Ultrasound Spectroscopy on Dumbbell-shaped Compression Samples Using COMSOL Multiphysics®

M. C. Golt[1]
[1]U.S. Army Research Laboratory*, Aberdeen Proving Ground, MD, USA
*Contracted through Dynamic Science, Inc.

The dumbbell geometry is an ideal shape for testing the compressive strength of advanced ceramic materials. This paper details the combined use of COMSOL Multiphysics® and LiveLink™ for MATLAB® for determining the elastic properties of dumbbell-shaped samples by measuring their acoustic resonance frequencies. Degenerate bending modes which are sensitive to inhomogeneities or machining defects ...

Use of FEM in the Design of an HTS Insert Coil for a High Field NMR Magnet - new

E. Bosque[1]
[1]Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, FL, USA

High temperature superconductors (HTS) allow larger current densities through coil wound electromagnets, which produce higher magnetic fields. A high field HTS insert demonstration magnet is being built with high field homogeneity (~1 ppm) for application in nuclear magnetic resonance (NMR). The HTS NMR system is inserted into the bore of an existing high field magnet. A compensating Helmholtz ...

Design and Simulation of a MEMS Directional Acoustic Sensor

S. L. Pinjare [1], V. S. Nagaraja [1], K. S. Rudresh [1],
[1] Department of ECE , Nitte Meenakshi Institute of technology, Bangalore, Karnataka, India

A Piezoelectric Directional Microphone is demonstrated based on a bio-mimetic design inspired by the parasitoid fly Ormia ochracea using the PiezoMUMPs multi-user foundry. The device simulation was conducted using COMSOL Multiphysics® software which achieves a directional sound field response and frequency band of 3.5 KHz to 4.5KHz. The sensitivity of the device is 3.8nV/pa.

Nature-Inspired Surfaces and Engineering Applications Using COMSOL Multiphysics®

R. C. Thiagarajan [1], P. Asutosh[1],
[1] ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka, India.

Engineering design has long been dominated by orthogonal Cartesian principles. Nature inspired equation based mathematical surfaces are under renewed interest due to their innovative design potential and practical viability by 3D printing. In this paper, the parametric surface modelling feature of COMSOL Multiphysics® is leveraged for developing engineering structures from equation based ...