The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Microresistor Beam

Microresistors allow for quick and accurate actuation or structural movement directly related to the electricity that is applied to them. Microresistors can be used in many applications where small perturbations or deflections are required to be applied to devices, almost instantaneously. The Microresistor Beam app illustrates the importance of fully coupled, multiphysics simulations. An ...

Generation of Random Surfaces

These examples demonstrate how to generate randomized geometric surfaces. The COMSOL Multiphysics® software provides a powerful set of built-in functions and operators, such as functions for uniform and Gaussian random distributions and a very useful sum operator. In the blog post associated with these files, "[How to Generate Random Surfaces in COMSOL Multiphysics](/blogs/how-to-generate ...

Radially Polarized Piezoelectric Transducer

This tutorial model shows how a user-defined coordinate system can be used to create any type of directional polarization of a piezoelectric material. Results are shown for the case of radial polarization of a piezoelectric disk. The piezoelectric material is PZT-5H. The example shows a static analysis. Visualization of the cylindrical coordinate system as well as the stress/strain in that ...

Electromagnetic Force Calculation Using Virtual Work and Maxwell Stress Tensor

The model compare the electromagnetic force calculated by *virtual work* and *maxwell stress tensor* methods on the axial magntic bearing. The forces is evaluated by studying the effect of a small displacement on the electromagnetic energy of the system. This is done by using the *Magnetic Fields*, *Deformed Geometry* and *Sensitivity* physics interfaces.

MEMS Pressure Sensor Drift Due to Hygroscopic Swelling

For their integration in microelectronic circuits, MEMS devices are bonded on printed circuit boards and connected with other devices. Then, the whole circuit is often covered with an epoxy mold compound (EMC) to protect the devices and their interconnects with the board. The epoxy polymers used for such applications are subject to moisture absorption and hygroscopic swelling, which can lead to ...

Piezoceramic Tube

This example involves a static 2D axisymmetric analysis of a piezoelectric actuator using the Piezoelectric Devices physics interface. It models a radially polarized piezoelectric tube, as described by S. Peelamedu and co-authors. An application area where radially polarized tubes are employed is in nozzles for fluid control in inkjet printers.

Adhesion and Decohesion of Indenting Ball

A steel ball is pressed down against a rubber membrane. When the contact pressure exceeds a certain value, the two parts start sticking together. When the ball is retracted, the membrane is pulled upwards in the bonded region. During the retraction, the bond is partially broken. This happens when the stresses exceed the limits specified in the decohesion law.

Residual Stress in a Thin Film Resonator - 3D

Surface micromachined thin films are often subject to residual stress. This COMSOL Multiphysics example describes a thin film resonator with straight or folded cantilever beam springs. The resonance frequencies of the resonator are affected by thermal stress. Using folded springs relieves this effect. The example is made up of four models: two thin film resonators with folded cantilever beam ...

Piezoelectric Valve

Piezoelectric valves are frequently employed in medical and laboratory applications due to their fast response times and quiet operation. Their energy efficient operation, also dissipates little heat, which is often important for these applications. This model shows how to model a piezoelectric valve in COMSOL. The valve is actuated by a stacked piezoelectric actuator. A hyper-elastic seal is ...

Thermoelastic Damping in a MEMS Resonator

Thermoelastic damping, which arises when you subject a material to cyclic stress, is an important factor when designing MEMS resonators. The stress brings about deformation, where materials heat under compressive stress and cool under tensile stress. Thus, due to the resulting heat flux, energy is lost to bring about this damping. The magnitude of the energy loss depends on the vibrational ...