See How Multiphysics Simulation Is Used in Research and Development


Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2010 - Parisx

On The Modelling Of Electrowetting Using COMSOL Multiphysics

J.F. Dannenberg, J. Brinkert, and E.A.D. Lamers
Reden b.v., Hengelo (ov.), The Netherlands

One of the upcoming technologies in displays is that of the electrowetting displays. A surface can be covered by a colored oil or transparent water using a voltage to increase or decrease the wettability of the surface. A simulation of the behavior of such a thin film of oil in water, ... Read More

Combustion Of Kerosene-Air Mixtures In A Closed Vessel

C. Strozzi, P. Gillard, and J-M. Pascaud
Institut PRISME, Bourges, France

The aim of this work is to present a simple multiphysics simulation using COMSOL able to describe combustion of kerosene vapours in a closed vessel. The emphasis is on the mechanical effects of the reactive processes. The evolution of the thermodynamical variables (pressure, temperature, ... Read More

Deformation Behavior Of A Liquid Droplet Impacting A Solid Surface

S. Oukach[1], M. Elganaoui[1], B. Pateyron[1], and H. Hamdi[2]
[1]Laboratoire des Sciences des Procèdes Céramiques et de Traitements de Surface SPCTS, Limoges, France
[2]Laboratoire de Mécanique des Fluides et Energétique LMFE, Marrakech, Morocco

The quality of coatings obtained by means of thermal spraying depends strongly on the mechanism of the interaction between the molten droplets and the surface to be covered. The aim of the present study is to simulate the impact of a droplet onto a substrate, in order to have a good ... Read More

Modelling Flow through Fractures in Porous Media

E. Holzbecher[1], W.L. Wah[1], and M-S. Litz[2]
[1]Georg-August Universität Göttingen, Germany
[2]Freie Universität Berlin, Germany

There are various alternative options concerning modeling fluid flow within fractures in porous media. We give a general overview, with remarks concerning the modeling using COMSOL Multiphysics. Moreover we define and study two test cases for intercomparison. Finally for one of the ... Read More

Pore-Scale Phase Field Model of Two-Phase Flow in Porous Medium

I. Bogdanov, S. Jardel, A. Turki, and A. Kamp
Open & Experimental Centre for Heavy Oil, University of Pau, Pau, France

Pore-scale modeling of multiphase flow through porous media is addressed most frequently to improve our understanding of flow and transport phenomena in such settings. It can be used to obtain macro-scale constitutive equations, to assign multiphase flow properties in large scale models, ... Read More

Modeling of High Temperature Superconducting Tapes, Arrays and AC Cables Using COMSOL

O. Chevtchenko
Technical University of Delft, The Netherlands

In this paper we present a set of numerical models created with COMSOL Multiphysics. The set includes quantitative models of a superconducting tape operated at 77 Kelvin, carrying a transport current and exposed to external magnetic field; an array of such tapes and a triaxial high ... Read More

Robust and Reliability-based Design Optimization of Electromagnetic Actuators Using Heterogeneous Modeling with COMSOL Multiphysics and Dynamic Network Models

H. Neubert[1], A. Kamusella[1], and T-Q. Pham[2]
[1]Technische Universität Dresden, Germany
[2]OptiY e. K. Aschaffenburg, Germany

For an exemplary electromagnetic actuator used to drive a Braille printer, a design optimization was performed. The optimization involves stochastic variables and comprises nominal optimization, robustness analysis and robust design optimization. A heterogeneous model simulates the ... Read More

Modeling of Laser Processing For Advanced Silicon Solar Cells

G. Poulain[1], D. Blanc[1], A. Kaminski[1], B. Semmache[2], and M. Lemiti[1]
[1]Université de Lyon: Institut des Nanotechnologies de Lyon INL, CNRS, INSA de Lyon, Villeurbanne, France
[2]SEMCO Eng., Montpellier Cedex 5 - France

Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional processing steps. In this context, laser processing offers a unique ... Read More

Numerical Simulation of Magnetic Drug Targeting with Flow – Structural Interaction in an Arterial Branching Region of Interest

A. Morega, A. Dobre, and M. Morega
University Politehnica of Bucharest, Bucharest, Romania

We report a numerical study on the blood – magnetic carrier aggregate flow in an external magnetic field, for applications such as magnetic drug targeting. The arterial system morphology is complex and patient-related therefore more realistic numerical simulations request medical image ... Read More

Features and Limitations of 2D Active Magnetic Levitation Systems Modeling in COMSOL Multiphysics

A. Piłat
AGH University of Science and Technology, Kraków, Poland

This elaboration presents the Active Magnetic Suspension (AMS) and radial Active Magnetic Bearing (AMB) as a representative of the Active Magnetic Levitation Systems (AMLS). The laboratory test rigs are analyzed in the 2D space. The control algorithm as well as the motion dynamics are ... Read More