Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Laser Processing For Advanced Silicon Solar Cells

G. Poulain[1], D. Blanc[1], A. Kaminski[1], B. Semmache[2], and M. Lemiti[1]
[1]Université de Lyon: Institut des Nanotechnologies de Lyon INL, CNRS, INSA de Lyon, Villeurbanne, France
[2]SEMCO Eng., Montpellier Cedex 5 - France

Silicon solar cells still require cost reduction and improved efficiency to become more competitive. New architectures can provide a significant increase in efficiency, but today most of the approaches need additional processing steps. In this context, laser processing offers a unique way to replace technological steps like photolithography that is not compatible with the requirements of the ...

Pore-Scale Phase Field Model of Two-Phase Flow in Porous Medium

I. Bogdanov, S. Jardel, A. Turki, and A. Kamp
Open & Experimental Centre for Heavy Oil, University of Pau, Pau, France

Pore-scale modeling of multiphase flow through porous media is addressed most frequently to improve our understanding of flow and transport phenomena in such settings. It can be used to obtain macro-scale constitutive equations, to assign multiphase flow properties in large scale models, to predict how these properties may vary with rock type, wettability, etc. The description of a physical ...

A Model of Gas Bubble Growth by COMSOL Multiphysics

B. Chinè[1,2], and M. Monno[1,3]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Instituto Tecnològico de Costa Rica, Escuela de Ciencia e Ingenierìa de Materiales, Cartago, Costa Rica
[3]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many complexities, mainly due to the coupled momentum, mass and energy transport mechanisms, presence of more phases in ...

On The Modelling Of Electrowetting Using COMSOL Multiphysics

J.F. Dannenberg, J. Brinkert, and E.A.D. Lamers
Reden b.v., Hengelo (ov.), The Netherlands

One of the upcoming technologies in displays is that of the electrowetting displays. A surface can be covered by a colored oil or transparent water using a voltage to increase or decrease the wettability of the surface. A simulation of the behavior of such a thin film of oil in water, forced to move due an electrostatic field, has been made using the level-set, two-phase flow application mode ...

Simulation And Verification Of Thomson Actuator Systems

A. Bissal, G. Engdahl, E. Salinas, and M. Ohrstrom
ABB / KTH, Stockholm, Sweden

The Thomson coil’s (TC) inherent characteristics are appropriate to meet the needs of high speed actuators for mechanical switching devices in so-called smart grids. This is due to the massive forces that it can exert in the time scale of milliseconds. A coupled COMSOL Multiphysics model is developed in 2D involving spice circuits, Magneto-statics, and Moving Mesh Mode for predicting the motion ...

Modelling and Analysis of Acoustic Emissions and Structural Vibration in a Wind Turbine

B. Marmo, and B. Carruthers
Reactec Ltd., Edinburgh, United Kingdom

The onshore wind turbine industry must overcome many technical, commercial, and environmental difficulties. A significant element for planning consent is operational noise. Acoustic limits are strictly enforced and can lead to near-neighbour complaints as well as contractual disputes. Reactec have diagnosed, analysed and solved a problematic tonal resonance for a major wind turbine generator ...

From CT Scan to Plantar Pressure Map Distribution of a 3D Anatomic Human Foot

S. Gerbino, and P. Franciosa
University of Molise, School of Engineering, Via Duca degli Abruzzi, Termoli, Italy

Understanding the stress-strain behavior of human foot tissues and pressure map distributions at the plantar interface is of interest into biomechanical investigations. In particular, monitoring plantar pressure maps is crucial to establishing the perceived human comfort of shoe insoles. A 3D anatomical detailed FE human foot model was created, starting from CT (Computer Tomography) scans of a ...

Two-Dimensional FEM Analysis Of Brillouin Gain Spectra In Acoustic Guiding And Acoustic Antiguiding Single Mode Optical Fibers

Y.S. Mamdem[4], X. Pheron[2], F.Taillade[3], Y. Jaouën[4], R. Gabet[4], V. Lanticq[1,3], G. Moreau[1], A. Boukenter[5], Y. Ouerdane[5], S. Lesoille[3], and J. Bertrand[2]
[1]EDF R&D, Chatou, France
[2]ANDRA, Chatenay-Malabry, France
[3]LCPC, Paris, France
[4]Telecom ParisTech, Paris, France
[5]Laboratoire Hubert Curien, Saint-Etienne, France

We present a full modal -analysis of optical and acoustic properties based on two-dimensional finite-element method (2D-FEM) for Brillouin Gain spectrum (BGS) determination in optical fibers with COMSOL. This model enables us to predict precisely the BGS of any kind of silica fiber knowing well the geometry of doping composition. The results of numerical modeling have shown good agreement in ...

Ultrasound Piezo-Disk Transducer Model For Material Parameter Optimization

L. Spicci, and M. Cati
Esaote SpA, Florence, Italy

The technology involved in high performance ultrasound imaging probes needs a reliable model to help in new projects development and performance simulations. To achieve a useful model, it is necessary to use correct values for all material parameters involved in the electro-acoustical performances of the piezoelectric material, but unfortunately some of these parameters are known only with high ...

Modeling of Vickers indentation of TiAl alloys

G. Maizza, and R. Cagliero
Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy

Instrumented indentation is increasingly used as an alternative non-destructive test method to measure mechanical properties of small volumes of materials. In this work, the instrumented indentation test is applied as a non-destructive method to assess the mechanical properties of TiAl components during the setup of a real production process. This study is a preliminary contribution devoted to ...