Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Temperature Gradients Controlled Broadband Acoustic Omnidirectional Absorber - new

F. Qian[1], L. Quan[1], X. Liu[1]
[1]Institute of Acoustics and School of Physics, Nanjing University, Nanjing, China

Previous research into acoustic omnidirectional absorber (AOA) has shown the feasibility of forming acoustic black hole to guide the incident wave into the central absorptive cavity. However, major restrictions to practical applications exist due to complexity of designing metamaterials and unchangeable working states. Here, we propose two cylindrical, two-dimensional AOA schemes based on ...

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two fluids in a micro- channel. Understanding the microfluidic flow at the micro channel is a develop methods of mixing ...

Optimization of Smart Diaphragm Material for Pressure Sensor in Ventilators

M. Algappan[1], P. C. Chakravarthi[1], R. Keerthana[1], S. Mangayarkarasi[1], A. Kandaswamy[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

A medical ventilator is an imperative device used to save life by delivering an assortment of air and oxygen into and out of the patients’ lungs to administer breathing or to assist obligatory breathing. The commercially available diaphragm based pressure sensors made up of silicon measure the air and oxygen flow. The proposed work utilizes the Piezo electric material for the pressure range ...

The Effect of Resistance on Rocket Injector Acoustics

C. J. Morgan [1], S. R. Fischbach [1],
[1] Jacobs ESSSA Group, NASA Marshall Space Flight Center, Huntsville, AL, USA

This study evaluates the effect of injector resistance on the mode shapes and complex eigenfrequencies of an injector/combustion chamber system by defining a high Mach-flow, potential flow form of the convective wave equation in the Coefficient Form PDE Mathematics interface. Background steady-state flow conditions are determined through a NASA Marshall Space Flight Center in-house fluid ...

Simulation of a Parallelizable Flow-Focusing Constant-Volume Droplet Generator

D. Conchouso [1], A. Arevalo [1], D. Castro [1], I. G. Foulds [2]
[1] King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
[2] School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

Parallelization of microfluidic droplet generators is one of the major challenges that droplet microfluidics has to overcome to contribute significantly towards the sustainable manufacturing of advanced materials such as nanoparticles, quantum dots, active pharmaceuticals, etc. A massive parallelization system needs to maintain consistency and uniformity across all droplet makers. To achieve ...

Simulation of Electro-Thermal Behavior of an Overlap Solder Interconnection

A. Koushki [1],
[1] Rostock University, Rostock, Germany

Solder connections are one of the most essential parts of the PCBs. Despite many well-known scientific works that have been done about overlap solder interconnection properties, such as fracture, fatigue and reliability studies, little attention have been given to the investigation of the connection between effects of electrical properties and laboratory soldering shortages such as effects of ...

Investigation of Performance of SOFC in Hydrocarbon Fuel

S. T. Aruna [1], S. Senthil[1], S. Chauhan [1], B. Shriprakash [1],
[1] CSIR-National Aerospace Laboratories, Bangalore, Karnataka, India.

SOFC is a high temperature electrochemical device known for its fuel flexibility. Apart from using pure hydrogen, it can utilize CO (carbon monoxide), CH4 (methane) or any other higher hydrocarbon. Since methane is highly researched hydrocarbon fuel, it was chosen to start with. The most prominent problem faced while using hydrocarbon fuel in SOFC is the formation and deposition of carbon on the ...

Interactions of Magnetic Particles in a Rotational Magnetic Field

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten
Bielefeld University, Germany

Particle-particle interactions are usually neglected when considering the behaviour of magnetic particle's so called magnetic beads in e.g. a microfluidic device. However, if the particle density exceeds a critical limit, this assumption might not lead to proper results anymore. In this paper the particle-particle interaction of magnetic beads in an external magnetic field will be discussed. It ...

Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer

S. Barth, and S. Zimmermann
Drägerwerk AG & Co. KGaA, Lübeck, Germany

Ion mobility spectrometry provides fast detection of very low concentrations of chemical substances. Simple instrumentation combined with high sensitivity and high selectivity are the advantages of this technique. One well established field of application is the detection of hazardous compounds in air, such as chemical warfare agents, explosives and pollutants. A numerical model based on finite ...

Application of System Identification Methods to Implement COMSOL Models into External Simulation Environments

A.W.M. van Schijndel[1] and M. Gontikaki[1]

[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Full coupling of distributed parameter models, like COMSOL, with the lumped models often lead to very time-consuming simulation duration times. In order to improve the speed of the simulations, the idea of using system identification methods to implement the distributed parameters models of COMSOL into external simulation environments, is explored. It is concluded that the system identification ...