Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Stabilization Time in Infiltration Test - new

A. H. Ito[1], S. R. Lautenschlager[1], J. H. C. Reis[1], A. Belincanta[1]
[1]Universidade Estadual de Maringá, Maringá, PR, Brazil

The percolation of water into soil can be modeled considering Darcy's Law in laminar flow. In this manner the key property is the coefficient of hydraulic conductivity. Its determination can be made through laboratory or field testing. One of the most known field tests used for determination of this property is the Slug Test. This test consists of a perforated well in the ground where a known ...

Modeling Migration-Diffusion-Reaction Processes in an Idealized Lithium-Sulfur Cell

G. Minton [1], R. Purkayastha [1], S. Walus [1], M. Marinescu [2], T. Zhang [2], G. Offer [2],
[1] Oxis Energy Ltd, Oxford, United Kingdom
[2] Imperial College London, London, United Kingdom

During the basic operation of a lithium-sulfur (Li-S) cell, sulfur molecules are required to undergo a complex mix of electrochemical and chemical reaction processes. To date, almost all modeling of Li-S cell behavior has been undertaken using electroneutral, structurally homogenized, cell scale models accounting for most of these processes. The presented work was undertaken in order to try and ...

Computational Analysis of the Mechanical and Thermal Stresses in a Thin Film PProDOT-Based Redox Capacitor

J. Sotero-Esteva[1], M. Rosario-Canales[2], P. Gopu[3], and J. Santiago-Avilés[3]

[1]Department of Mathematics, University of Puerto Rico at Humacao, Humacao, PR
[2]Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
[3]Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Among the several types of capacitors, the double-layer and redox types have gathered increasing attention to address some of the heavy power demands of modern technology. In redox capacitors, charge is stored chemically via oxidation/reduction processes in the active materials like electroactive polymers (EAPs) or metal oxides. This work investigates the stresses and heat flux of the electrode ...

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time frames involved. Performing a safety analysis of a radioactive waste disposal system requires therefore ...

Simulation of Surface Chemical Reactions in a Monolith Channel for Hydrogen Production

N. Pacheco[1], D. Pavone[1], K. Surla[1], J. Houzelot[2], and E. Schaer[2]
[1]IFP-Lyon, Solaize, France
[2]ENSIC, Solaize, France

This paper intends to show a model of a monolithic reactor for the autothermal reforming process (ATR), a process that uses hydrocarbons to produce H2. The ATR chemical reactions take place on the surface of monolith channels coated with a catalyst. The isothermal ATR reactor is modeled using 42 catalytic surface chemical reactions that involve 13 solid species and 7 gas species. To solve the ...

Finite Element Analysis of Molecular Rydberg States

M.G. Levy[1], X. Liang[1], R.M. Stratt[1], and P.M. Weber[1]

[1]Department of Chemistry, Brown University, Providence, Rhode Island, USA

Identifying molecules requires associating molecular structures with their electronic energy levels. In this paper we introduce a novel technique for the calculation of molecular Rydberg levels. The technique allows for easy visualization of the associated wavefuntions to make unambiguous assignments. The value calculated for the 3p state of trimethylamine is most closely in agreement with ...

Energy Transformation Damping

G.S. Mulder[1]
[1]Leiden, The Netherlands

A model for material damping is presented in terms of internal friction and in terms of a variation of stiffness. In the latter case the idea is that the stiffness increases if elastic energy is stored and decreases if elastic energy is released. In case of a single mass spring system “stiffness” refers to the stiffness of the spring; in case of a continues object &ldquo ...

Variation of the Frost Boundary below Road and Railway Embankments in Permafrost Regions in Response to Solar Irradiation and Winds 

N.I. Kömle[1] and W. Feng[2]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China

We present COMSOL solutions for a coupled gas flow and heat transfer problem, which occurs particularly when traffic pathways are constructed in high altitude and arctic regions, where the underground is frozen soil. To avoid melting of the frozen ground (which usually leads to mechanical instability) one has to find suitable measures to keep the subsurface soil and the embankment suitably cool. ...

Motion of Uncharged Particles in Electroosmotic Flow through a Wavy Cylindrical Channel

N. Qudus[1], T. Mahbub[1], S. A. Ali[1], and M. Shajahan[1]
[1] Bangladesh University of Engineering and Technology, Dhaka Bangladesh

A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains continuity and Navier–Stokes equations for the solution of fluid flow. A particle trajectory model was ...

Modeling the Heat Treatment of a Starch Suspension inside a Tubular Heat Exchanger

A. Plana-Fattori[1,2], E. Chantoiseau[1,2], C. Doursat[1,2], and D. Flick[1,2]
[1]AgroParisTech, Massy, France
[2]INRA, Massy, France

Many liquid food processes involve coupled phenomena of fluid flow, heat transfer and product transformation. A typical example is the heat treatment of a starch suspension inside a tubular heat exchanger. Fluid flow influences heat transfer which determines temperature evolution along fluid trajectories. Temperature locally influences the food product transformation. The latter influences ...