How to Analyze Laser Cavity Stability with Multiphysics Ray Tracing

Yosuke Mizuyama June 15, 2017

The laser is one of the most useful inventions in modern science, but it is not an easy device to use. Lasers work only when the cavity mirrors are aligned perfectly. Even if a laser is lasing for a while, it can stop all of a sudden. In today’s blog post, we will talk about how to predict laser stability using the ray tracing capabilities in the COMSOL Multiphysics® software.

Read More

Categories

Yosuke Mizuyama June 13, 2017

Ray tracing is an effective tool for high-frequency optics simulations. The Ray Optics Module for the COMSOL Multiphysics® software uses a multiphysics-capable wavefront method for its ray tracing. In this blog post, we’ll explore what makes the ray tracing algorithm in COMSOL Multiphysics distinct from traditional ray tracing algorithms described in standard geometrical optics textbooks and suggest a series of best practices to help you get the most out of your simulation results.

Read More

Categories

Caty Fairclough May 29, 2017

When designing a solar dish receiver, you may need to rerun your simulation multiple times to find an optimized design iteration. To save time, you can build an app that enables you to rapidly test different geometries and more easily create improved designs. Let’s explore a new simulation app in COMSOL Multiphysics® version 5.3, the Solar Dish Receiver Designer, which you can use as inspiration for building apps of your own.

Read More

Categories

Christopher Boucher May 2, 2017

The release of version 5.3 of the COMSOL Multiphysics® software includes a new Ray Termination feature to simplify the setup and results analysis for optical simulations with the Ray Optics Module. Use the Ray Termination feature to remove rays that are no longer relevant to the solution, either because they have escaped from the geometry or their intensity is negligibly small. In this blog post, we’ll learn how to use this feature and see how it simplifies ray optics simulation.

Read More

Categories

Andrew Strikwerda January 30, 2017

Welcome back to our discussion on multiscale modeling in high-frequency electromagnetics. Multiscale modeling is a simulation challenge that arises when there are vastly different scales in a single simulation, such as the size of an antenna compared to the distance between the antenna and its target. Today, in Part 4 of the series, we will examine how we can construct a multiscale model by coupling a Full-Wave antenna simulation with a geometrical optics simulation using the Ray Optics Module.

Read More

Andrew Strikwerda January 18, 2017

In Part 3 of our series on multiscale modeling in high-frequency electromagnetics, let’s turn our attention to the receiving antenna. We’ve already covered theory and definitions in Part 1 and radiating antennas in Part 2. Today, we will couple a radiating antenna at one location with a receiving antenna 1000 λ away. For verification, we will calculate the received power via line-of-sight transmission and compare it with the Friis transmission line equation that we covered in Part 1.

Read More

Andrew Strikwerda January 12, 2017

In Part 2 of our blog series on multiscale modeling in high-frequency electromagnetics, we discuss a practical implementation of multiscale techniques in the COMSOL Multiphysics® software. We will simulate radiated fields using two different techniques and verify our results with theory. While these methods can be generally applied, we will always revolve around the practical issue of antenna-to-antenna communication. For a review of the theory and terms, you can refer to the first post in the series.

Read More

Andrew Strikwerda January 11, 2017

This post begins a comprehensive blog series where we will look at several approaches to multiscale modeling in high-frequency electromagnetics. Today, we will introduce the supporting theory and definitions that we will need. In subsequent posts, you will learn how to implement multiscale modeling of high-frequency electromagnetics for different scenarios in the COMSOL Multiphysics® software. Let’s get started…

Read More

Christopher Boucher June 23, 2016

A paraboloidal solar dish can focus solar radiation onto a small target or cavity receiver. Because solar energy is collected over a large area, the incident heat flux at the receiver is extremely high. This thermal energy can then be converted to electrical energy or used to produce a chemical energy source, such as hydrogen. Today, we discuss strategies for computing the distribution of heat flux in the focal plane of a typical solar dish concentrator/receiver system.

Read More

Categories

Christopher Boucher June 20, 2016

With the release of COMSOL Multiphysics® version 5.2a, it is now possible to trace rays in unmeshed domains and even release and trace rays outside a geometry. The Ray Optics Module provides an entirely new algorithm that offers these capabilities and more, so that you can model your ray optics designs with ease and accuracy. Let’s investigate how this new algorithm affects your workflow when setting up a typical ray optics model.

Read More

Categories

Aditi Karandikar May 11, 2016

Lasers, focused beams of photons of a single wavelength, find use in a wide variety of applications today — from noninvasive surgeries and fiber optic communication to material processing and even DVD players. Let’s see how a research team from Lawrence Livermore National Laboratory (LLNL) used the power of multiphysics simulation to investigate laser-material interaction to avoid the damage of optics internal to high-power laser systems.

Read More


Categories


Tags

1 2