New Reacting Flow Multiphysics Interface Delivers Greater Flexibility

Ed Fontes September 9, 2016

In recent versions of the COMSOL Multiphysics® software, we’ve added several new multiphysics interfaces that include the constituent interfaces as separate physics interfaces, with the couplings predefined in the model tree’s Multiphysics node. This provides you with the best of both worlds, combining the flexibility of the constituent physics interfaces and the user-friendly nature of the predefined multiphysics couplings. The latest version of COMSOL Multiphysics® — version 5.2a — is no exception with the new Reacting Flow multiphysics interface.

Read More

Caty Fairclough August 26, 2016

Around the world, trash is added to landfills at an increasingly rapid rate. Since these landfills take up large areas of land and can cause environmental issues, researchers are looking for safer, space-saving solutions. One option is to convert traditional anaerobic landfills into aerobic bioreactor landfills. This conversion process needs to be studied further, which could take years experimentally. For faster results, researchers at the University of Western Ontario used the COMSOL Multiphysics® software to efficiently analyze this process.

Read More

Caty Fairclough May 17, 2016

Tubular reactors are commonly used in the chemical industry, where they help with continuous large-scale production. To accurately analyze these devices, we can simulate the tubular reactor’s dissociation process. In this blog post, we compare isothermal and nonisothermal simulation studies. Such studies showcase multiple helpful features from the Chemical Reaction Engineering Module that you can use in your own simulations.

Read More

Bridget Cunningham April 25, 2016

Behind every glass of beer is a series of steps that deliver its unique taste. Fermentation, the process during which sugars are converted into alcohol, is one of these important steps. With the help of COMSOL Multiphysics, we can study the fermentation process, identifying ways to optimize its efficiency and serve up a better-tasting beer.

Read More

Edmund Dickinson January 19, 2016

When studying a system’s chemical kinetics, it’s common to use perfectly mixed batch reactor assumptions and design experiments that keep mixing conditions ideal. Such assumptions include perfectly mixed (ideal tank reactors) and perfectly unmixed (ideal plug flow reactors). In reality, however, it’s rare that all of the reactor’s parts behave the same way. Space-dependent modeling is thus essential in understanding and optimizing chemical reactors. Let’s explore the development of a detailed reactor model, starting with a simple perfectly mixed example.

Read More

Lexi Carver December 28, 2015

Corrosion is one of the most serious factors affecting the transportation industry. In an effort to minimize its impact, a German research institute and the manufacturers of Mercedes-Benz joined forces to investigate the corrosion occurring in automotive rivets and sheet metal. Using COMSOL Multiphysics simulation, they were able to study corrosion’s effects on car components.

Read More

Ed Fontes May 12, 2015

Biosensors are the workhorses of the analytical tools used for detailed mechanistic understanding at the molecular level of biological systems. The applications of these analysis tools are countless for the detection of biomolecules in the pharmaceutical, health care, and food industries; agriculture; environmental technologies; and in general for research of biological systems. The biosensor demo app is a good example of an application where non-experts can benefit from accurate multiphysics simulations.

Read More

Bridget Cunningham April 2, 2015

In this blog post, we investigate syngas combustion in a round-jet burner using the Reacting Flow interface and the Heat Transfer in Solids interface. The results from this benchmark model are compared to experimental findings.

Read More

Bridget Cunningham March 13, 2015

The biological and chemical processes behind the development of biopharmaceuticals have an important effect on product quality. With its ability to deliver quick results at a lower cost, simulation is a valuable resource in studying and optimizing these techniques. Learn how COMSOL Multiphysics can benefit your modeling of biopharmaceutical processes.

Read More

Bridget Cunningham February 24, 2015

Continuous stirred tank reactors (CSTRs), or ideal stirred tank reactors, are frequently used in the chemical and biochemical industries. This reactor type operates at steady state and because of its good mixing properties, it is assumed that the composition throughout the reactor is uniform. Using a new model in the Reaction Engineering interface, we can visualize the dynamics within an ideal system of tank reactors.

Read More

Niklas Rom February 13, 2015

Many exciting features for chemical engineering modeling were introduced in COMSOL Multiphysics version 5.0. In this blog post, I will discuss the most important updates. There are some new modeling interfaces, such as the Chemistry interface, and some that have been revamped and improved, like the Reaction Engineering interface. To begin with, I will recap the modeling interfaces for reaction engineering and mass transport.

Read More



1 2 3 4