Analyzing Critical Speeds with the Rotor Bearing System Simulator

Prashant Srivastava May 25, 2017

Rotating components are important elements in machines such as gas turbines, turbochargers, pumps, compressors, electric generators, and motors. Designing such a component requires studying its critical speed, which is the speed at which the amplitude of the vibration in the system becomes large — often leading to failure. Let’s explore how to find the critical speeds for a wide range of rotors via the Rotor Bearing System Simulator, created using the COMSOL Multiphysics® software.

Read More

Bridget Cunningham March 1, 2017

To provide sufficient support for a rotating shaft or journal, it is important to choose a hydrodynamic bearing design with the right load capacity. If the applied loads are greater than a bearing design can handle, it can cause excessive wear and instability. With the Rotordynamics Module, an add-on product to the COMSOL Multiphysics® software, you can compare the load capacities for different types of hydrodynamic bearings and determine which one is best suited for your particular application.

Read More

Bridget Cunningham January 2, 2017

When a reciprocating engine’s crankshaft is under rotation, self-excited vibrations occur. These vibrations result from the eccentricity of the crank pin and balance masses on the mechanical part. Here, we’ll accurately study the response of the rotors and the orbits of the mass balances on the shaft with the Rotordynamics Module, a new add-on product to the COMSOL Multiphysics® software and Structural Mechanics Module. From these results, you can improve a crankshaft’s design to reduce vibrations, while optimizing engine performance.

Read More

Caty Fairclough December 6, 2016

When modeling a rotating machine, it’s important to study the vibrations influencing its behavior in order to avoid machine failure. One way to accomplish this is with the new Rotordynamics Module, an expansion to the add-on Structural Mechanics Module for the COMSOL Multiphysics® software. Today, we’ll introduce you to the Rotordynamics Module and walk you through its helpful features and functionality for improving your rotating machinery design process.

Read More

Caty Fairclough September 8, 2016

Rotating machinery is an important element in many structures, from wind turbines to engines. The analysis of this rotating machinery — a field known as rotordynamics — is key in reducing noise and vibrations in many areas of technology. Here, we’ll take a closer look at rotordynamics and its relevance within various applications.

Read More