Per page:
Search

Wave Optics Blog Posts

How to Implement the Fourier Transformation from Computed Solutions

February 27, 2017

In this wave optics demonstration, learn how to implement the Fourier transformation for computed solutions, using the example of an electromagnetic simulation of a Fresnel lens.

Improving the Design of Monolithically Integrated Magneto-Optic Routers

February 17, 2017

Magneto-optic (MO) routers are an efficient alternative to electro-optic (EO) routers for communication systems. Learn about a modeling approach used by researchers to improve MO router designs.

How to Couple a Full-Wave Simulation to a Ray Tracing Simulation

January 30, 2017

Learn how to couple full-wave and ray tracing simulations in a model with a nonhomogenous domain around the antenna. Part 4 of a series on multiscale modeling in high-frequency electromagnetics.

How to Couple Radiating and Receiving Antennas in Your Simulations

January 18, 2017

Learn how to couple radiating and receiving antennas in your simulations by using the scattered field formulation. Part 3 of a series on multiscale modeling in high-frequency electromagnetics.

2 Methods for Simulating Radiated Fields in COMSOL Multiphysics®

January 12, 2017

2 ways to model radiated fields: the Far-Field Domain node and the Electromagnetic Waves, Beam Envelopes interface. Part 2 of a series on multiscale modeling in high-frequency electromagnetics.

Introduction to Multiscale Modeling in High-Frequency Electromagnetics

January 11, 2017

Here’s an introduction to performing multiscale analyses of antennas and communication systems. Part 1 of a series on multiscale modeling in high-frequency electromagnetics.

Understanding the Paraxial Gaussian Beam Formula

September 21, 2016

The Gaussian beam is recognized as one of the most useful light sources. To describe the Gaussian beam, there is a mathematical formula called the paraxial Gaussian beam formula. Today, we’ll learn about this formula, including its limitations, by using the Electromagnetic Waves, Frequency Domain interface in the COMSOL Multiphysics® software. We’ll also provide further detail into a potential cause of error when utilizing this formula. In a later blog post, we’ll provide solutions to the limitations discussed here.

Study the Design of a Polarizing Beam Splitter with an App

September 12, 2016

Polarizing beam splitters are optical devices used to split a single light beam into two beams of varying linear polarizations. These devices are useful for splitting high-intensity light beams like lasers as, unlike absorptive polarizers, they do not absorb or dissipate the energy of the rejected polarization state. See why creating a numerical modeling app offers a more efficient approach to analyzing and optimizing the design of these devices.


17–24 of 46
EXPLORE COMSOL BLOG