Joule Heating Simulations Tutorial

January 29, 2013

One of the classic multiphysics couplings in engineering and science is Joule heating, also called resistive heating or ohmic heating. Some Joule heating examples include heating of conductors in electronics, fuses, electric heaters, and power lines. When a structure is heated by electric currents, the device can reach high temperatures and either structurally degenerate or even melt. The design challenge is to remove this heat as effectively as possible. COMSOL eases these challenges by providing a specialized multiphysics interface for Joule heating, allowing for quick and easy definition of the phenomenon and even includes the ability to model convection for removing the heat.

Here, we’ve produced a video resource for you to see how you can effectively simulate Joule heating using COMSOL Multiphysics. The 2-chapter video tutorial demonstrates how to model the Joule heating of a fuse, seeking to answer the question: “Will it blow?”.

Chapter 1: Build Model and Add Materials

Chapter 2: Add Physics and Solve Model

Shown in the Joule Heating Videos

In these tutorials, Linus Andersson from the Global Technical Support Team here at COMSOL will show you how to couple the direct current electrical current in a fuse on a circuit board to the heat transfer in it and the surrounding system. Copper lines or traces feed the fuse, which is made of aluminum, and we’re interested in if we will exceed the melting-point of aluminum (933 Kelvin), or if the convection cooling will be adequate. Chapter 1 walks you through building the model and adding the appropriate materials and their properties. As you will see, the material properties are selected from the built-in Material Library, but you could also use your own material or even experimental data from an external source, such as Excel®. The second chapter of the video series completes the simulation by demonstrating how to add the physics and solve the model. The solved model depicts the temperature profile of the fuse ranging from room temperature to the maximum temperature in the fuse. Spoiler alert: the fuse will melt. Also shown are the electric potential profile and the norm of the current density.

Comments (3)

Leave a Comment
Log In | Registration
ashkan razmara
August 21, 2015

can you put here the model you import in first video?

Fanny Littmarck
August 21, 2015

Hello Ashkan,

Unfortunately we cannot publish this particular model online. Please contact our Technical Support team for assistance:

Patrick Noyes
January 17, 2019

Would it be possible to update this tutorial? As someone who is learning a lot of the physics options have been shuffled around and it making is hard to replicate a simplified version of this demonstration.