Per page:

All posts by Brianne Christopher

Analyzing Mutual Inductance in Different Coil Arrangements

August 19, 2015

Have you ever noticed that being around a happy, enthusiastic friend makes you feel happy too? You can look at mutual induction in a similar way: A current flowing through one circuit creates a current in a nearby circuit. Mutual inductance measures the amount of change required for this effect to take place. Here, we explore using simulation to compute the mutual inductance in different wire coil arrangements.

Simulating a Transparent Light Pipe to Optimize Transmittance

August 3, 2015

Imagine commuting home from work in a dark, dreary subway station. Catching a rare glimpse of natural sunlight could brighten your day and make the ride home much more bearable, but how? With light pipes, natural light can be distributed in otherwise dark areas without any electricity. In this blog post, we explore these simple and elegant devices and show how they can be analyzed in greater detail through simulation.

Using an Origami Battery to Power a Biosensor

July 16, 2015

The ancient Japanese art of origami enables you to create many intricate designs out of folded paper. Recently, researchers drew inspiration from this craft to develop a fully functional battery consisting mostly of paper and water. They found that the simple device generates enough energy to power a biosensor.

Optimizing the Production Process for Solar Energy Cells

July 8, 2015

Solar energy is created by combining sunlight with a semiconducting material, often silicon. But solar, or photovoltaic, cells require such a high-quality silicon that the manufacturing process is complicated and costly. As a photovoltaic material producer and furnace manufacturer, EMIX turned to COMSOL Multiphysics® simulation software to optimize their cold crucible continuous casting (4C) process and create the silicon needed for a more efficient solar-powered world.

Optimizing Antenna Design for 5G and the Internet of Things

June 23, 2015

As you leave for work, your garage door closes and texts your office coffeemaker to start brewing a fresh pot. During the day, your sprinkler system gets a weather report that it’s going to rain and cancels its afternoon watering. This isn’t a futuristic television show, it’s the Internet of Things, and with the next generation of wireless communication, 5G, it’s coming soon. First, we need to optimize the performance of existing mobile device antennas.

App: Evaluating the Design of an Ion Implanter

June 17, 2015

The semiconductor industry uses ion implanters to implant dopants into wafers. To optimize the design of these devices, engineers need to quickly and easily test a wide range of parameters. Simulation apps help streamline the design process of ion implanters by sharing the capabilities of a simple and fully customizable interface with colleagues who don’t have a simulation background. Here, we introduce you to our Ion Implanter Evaluator demo app.

Simulating UHV/CVD and Silicon Growth on a Wafer Substrate

May 25, 2015

Chemical vapor deposition (CVD) is popular in the semiconductor industry for its ability to produce high-quality, pure, and extremely strong materials. Ultrahigh vacuum CVD (UHV/CVD) requires complex equipment and very high temperatures. To increase efficiency and control costs, engineers can simulate this complex process. Here, we use the growth of silicon wafers as an example.

Modeling a Stacked Piezoelectric Actuator in a Valve

May 13, 2015

Piezoelectric valves are opened and closed by stacked piezoelectric actuators that are positioned above a seal. By applying a voltage to the stacked piezoelectric actuator, it can be made to expand or contract and the resulting deformation is used to open and close the valve. In this blog post, we feature a tutorial model of a stacked piezoelectric actuator in a pneumatic valve, new with COMSOL Multiphysics version 5.1.

73–80 of 86