Nonlinear elastic materials present nonlinear stress-strain relationships even at infinitesimal strains — as opposed to hyperelastic materials, where stress-strain curves become significantly nonlinear at moderate to large strains. Important materials of this class are Ramberg-Osgood for modeling metals and other ductile materials and nonlinear soils models, such as the Duncan-Chang model.

### Power Law

The nonlinear stress-strain behavior in solids was already described 100 years ago by Paul Ludwik in his *Elemente der Technologischen Mechanik*. In that treatise, Ludwik described the nonlinear relation between shear stress \tau and shear strain \gamma observed in torsion tests with what is nowadays called *Ludwik’s Law*:

(1)

For n=1, the stress-strain curve is linear; for n=2, the curve is a parabola; and for n=\infty, the curve represents a perfectly plastic material. Ludwik just described the behavior (*Fließkurve*) of what we now call a *pseudoplastic material*.

In version 5.0 of the COMSOL Multiphysics simulation software, beside Ludwik’s power-law, the Nonlinear Structural Materials Module includes different material models within the family of nonlinear elasticity:

- Ramberg-Osgood
- Power Law
- Uniaxial Data
- Bilinear Elastic
- User Defined

In the Geomechanics Module, we have now included material models intended to represent nonlinear deformations in soils:

- Hyperbolic Law
- Hardin-Drnevich
- Duncan-Chang
- Duncan-Selig

### An Example with Uniaxial Data

The main difference between a nonlinear elastic material and an elastoplastic material (either in metal or soil plasticity) is the reversibility of the deformations. While a nonlinear elastic solid would return to its original shape after a load-unload cycle, an elastoplastic solid would suffer from permanent deformations, and the stress-strain curve would present hysteretic behavior and ratcheting.

Let’s open the Elastoplastic Analysis of a Plate with a Center Hole model, available in the Nonlinear Structural Materials Model Library as *elastoplastic_plate*, and modify it to solve for one load-unload cycle. Let’s also add one of the new material models included in version 5.0, the *Uniaxial data* model, and use the stress_strain_curve already defined in the model.

Here’s a screenshot of what those selections look like:

In our example, the stress_strain_curve represents the bilinear response of the axial stress as a function of axial strain, which can be recovered from Ludwik’s law when n=1.

We can compare the stress distribution after laterally loading the plate to a maximum value. The results are pretty much the same, but the main difference is observed after a full load-unload cycle.

*Top: Elastoplastic material. Bottom: Uniaxial data model.*

Let’s pick the point where we observed the highest stress and plot the *x*-direction stress component versus the corresponding strain. The green curve shows a nonlinear, yet elastic, relation between stress and strain (the stress path goes from a\rightarrow b \rightarrow a \rightarrow c \rightarrow a). The blue curve portraits a hysteresis loop observed in elastoplastic materials with isotropic hardening (the stress path goes from a\rightarrow b \rightarrow d \rightarrow e ).

With the Uniaxial data model, you can also define your own stress-strain curve obtained from experimental data, even if it is not symmetric in both tension and compression.

### Further Reading

- P. Ludwik.
*Elemente der Technologischen Mechanik* - “Hypoelasticity“, Chapter 3.3 of
*Applied Mechanics of Solids* - Download the Elastoplastic Analysis of a Plate with a Center Hole model

## Comments (3)

## vikash kumar

February 10, 2017sir

i want the solution of uniaxial compression test simulation . My material is polymer(ABS material). if you could help me in getting stress -strain curve.

## Wenjing Wang

April 9, 2020Hi Ed, What does the solid.eax mean in the figure?

## Ed Gonzalez

April 14, 2020Hi Wenjing,

The variable solid.eax matches the uniaxial strain when the body is under pure uniaxial loading.