Per page:
Search

Blog Posts Tagged Optimization Module

Changing the Dimensions of a Model Using Shape Optimization

December 24, 2015

In this blog post, we will introduce the concept of shape optimization for adjusting part dimensions by using analytic sensitivity methods. If you have a single objective function that you want to improve, a set of geometric parameters that you want to change, as well as a set of constraints, then you can use the functionality of the Optimization Module and the Deformed Geometry interface in COMSOL Multiphysics to find the optimal structure without any remeshing. Let’s find out how!

TNO Advances Virtual Material Design in 3D Printing

December 23, 2015

3D printing, also known as additive manufacturing, has been a popular topic of discussion on the COMSOL Blog and throughout the scientific community. New initiatives have furthered the capabilities of this technology, while extending its reach in various fields of research, manufacturing, and design. With the help of COMSOL Multiphysics, researchers at the Netherlands Organization for Applied Scientific Research (TNO) are investigating the promise of 3D printing in the realm of material design.

How to Solve for the Brachistochrone Curve Between Points

October 20, 2015

The shortest route between two points isn’t necessarily a straight line. If by shortest route, we mean the route that takes the least amount of time to travel from point A to point B, and the two points are at different elevations, then due to gravity, the shortest route is the brachistochrone curve. In this blog post, we demonstrate how to use built-in mathematical expressions and the Optimization Module in COMSOL Multiphysics to solve for the brachistochrone curve.

Finding a Structure’s Best Design with Topology Optimization

September 23, 2015

Think about the first architects who designed a bridge above water. The design process likely included several trials and subsequent failures before they could safely allow people to cross the river. COMSOL Multiphysics and the Optimization Module would have helped make this process much simpler, if they had computers at the time, of course. Before we start to discuss building and optimizing bridges, let’s first identify the best design for a simple beam with the help of topology optimization.

Multistudy Structural Optimization of a Bracket

September 11, 2015

Weight reduction is a key design focus in many applications. This is particularly true in the automotive industry, where lightweight materials help foster the development of fuel efficient cars. Maintaining the structural integrity of these materials is, of course, an important concern. As we will show you today, simulation is a valuable tool for addressing this challenge.

Student Team Wins R&D Award for Optimizing a Mini Race Car

July 22, 2015

You may know of Boreas, the Greek god of North Wind, but did you know that it’s also the name of a German team for Formula 1 in schools? This is no coincidence; it describes their strong will to develop race cars that are “as fast as a storm”. With this spirit and COMSOL Multiphysics, the team won several qualifying races, reached third place in the 2014 world finals, and was honored with the innovation award for Research and Development.

Studying Impedance to Analyze the Li-Ion Battery with an App

July 14, 2015

Batteries generally operate through numerous processes that depend on even more parameters. How can you find out more about what’s going on within them? One approach is to look at the cell’s electrical impedance. The Lithium-Ion Battery Impedance demo app, available in the Application Gallery, can be used to interpret the impedance of a specific lithium-ion battery design with minimal effort. It can also help parameterize the system, a useful step for setting up accurate time-dependent models in the future.

Fitting Measured Data to Different Hyperelastic Material Models

June 24, 2015

Previously on the blog, we have discussed the need for appropriate measured data to fit the material parameters that correspond to a material model. We have also looked at typical experimental tests, considerations for operating conditions when choosing a material model, and an example of how to use your measured data directly in a nonlinear elastic model. Our focus today will be on how to fit your experimental data to different hyperelastic material models.


EXPLORE COMSOL BLOG